HOLOMORPHIC FUNCTIONS WITH LINEARLY ACCESSIBLE ASYMPTOTIC VALUES

David C. Haddad

Let D and C denote the open unit disc and the unit circle. An arc $T \subset D$ ends at $z_0 \in C$ if $T \cup z_0$ is a Jordan arc. A holomorphic function f in D has asymptotic value w_0 at $z_0 \in C$ if there exists an arc $T \subset D$, ending at z_0 , such that $f(z) \to w_0$ as $z \to z_0$ ($z \in T$). The arc T is then an asymptotic path of f. If f maps f one-to-one onto a linear segment ending at w_0 , then f has a linearly accessible asymptotic value at z_0 . Let $A_L(f)$ denote the set of points at which f has linearly accessible values. f G. R. MacLane [8, Theorems 3, 5, 7] has given several sufficient conditions for f f to be dense on f C. We shall give a necessary and sufficient condition for f f to be dense on f C.

Let S be a nonempty subset of D. For each r (0 < r < 1), let the components of $S \cap \{z: r < |z| < 1\}$ be $S_{\beta}(r)$ $(\beta \in B)$. Let $d_{\beta}(r)$ be the diameter of $S_{\beta}(r)$, and let $d(r) = \sup_{\beta \in B} d_{\beta}(r)$. Clearly, d is a nonincreasing function of r. The set S ends at points of C if $d(r) \downarrow 0$ as $r \uparrow 1$.

If w = f(z) is a nonconstant, holomorphic function in D, we denote by F the Riemann surface of f^{-1} (as a covering surface over the w-plane). Let p denote the projection from F onto the w-plane, and let \tilde{f} be the one-to-one conformal map of D onto F, so that $f = p \circ \tilde{f}$. Corresponding to each set S in the w-plane, we denote by F_S the set of points of F lying over S.

MacLane's class \mathscr{A} is the class of nonconstant holomorphic functions in D that have asymptotic values at a dense subset of C. A function f belongs to class \mathscr{L} if it is nonconstant and holomorphic in D and if for each $r \geq 0$ the level set $\{z: |f(z)| = r\}$ ends at points of C. MacLane [7, Theorem 1] proved that $\mathscr{A} = \mathscr{L}$. We now state our main result.

THEOREM 1. Let f be a nonconstant, holomorphic function in D. A necessary and sufficient condition for $A_L(f)$ to be dense on C is that there exists a line K in the w-plane such that the set $\tilde{f}^{-1}(F_K)$ ends at points of C.

REMARKS. 1. In the notation of this paper, we can restate the assertion $\mathscr{A}=\mathscr{L}$ as follows. A necessary and sufficient condition for a nonconstant holomorphic function f to belong to class \mathscr{A} is that the set $\widetilde{\mathbf{f}}^{-1}(\mathbf{F}_{|\mathbf{w}|=r})$ ends at points of C, for each $r\geq 0$. From this restatement it is clear that the condition of Theorem 1 for lifting lines is analogous to MacLane's condition expressed in $\mathscr{A}=\mathscr{L}$ for lifting circles.

2. In proving Theorem 1, we shall prove that a necessary condition for $A_L(f)$ to be dense on C is that the set $\widetilde{f}^{-1}(F_K)$ ends at points of C for every line K in the w-plane. Hence, if the set $\widetilde{f}^{-1}(F_K)$ ends at points of C for one line K in the w-plane, then $A_L(f)$ is dense on C and hence the set $\widetilde{f}^{-1}(F_K)$ ends at points for every line K in the w-plane.

Received November 3, 1971.

The author is indebted to G. R. MacLane, K. Barth, R. Hall, and the referee for many helpful suggestions.

Michigan Math. J. 19 (1972).