VECTOR-VALUED ANALYTIC FUNCTIONS

Michael E. Taylor

In this note we show that a function f defined on a real domain and taking values in the dual of a Fréchet space is analytic if it is weakly analytic. A counterexample shows that this is not generally true for functions taking values in a Fréchet space.

We apply this result to a consideration of partially analytic distributions, and to a theorem of T. Kotake and M. S. Narasimhan on the behavior of elliptic partial differential operators with analytic coefficients.

First, let us fix some notational conventions. We shall denote by \mathscr{O} the space of germs of functions holomorphic in a neighborhood of the point 0 in the complex plane \mathbb{C} , and by \mathscr{P} the space of formal power series in z. By $\mathscr{H}(B_r)$ we shall mean the space of holomorphic functions defined on the disc $B_r = \{z \in \mathbb{C} : |z| < r\}$. Then \mathscr{O} is a (generalized) LF-space; $\mathscr{O} = \bigcup_{r>0} \mathscr{H}(B_r)$.

Our first theorem could be proved directly by means of the Baire Category Theorem. However, we prefer to use the theorem of Grothendieck that if $T\colon E\to F$ is a closed linear map, E is a Fréchet space, and $F=\bigcup F_k$ is an inductive limit of a sequence of Fréchet spaces, then there exists an N such that T maps E into F_N continuously. (See Theorem 3 and the remark at the end of this note.)

THEOREM 1. Let E be a Fréchet space and E' its strong dual. If $\{f_j\}$ is a sequence of elements of E' such that, for each $u \in E$, the sequence $\{\left|\left\langle f_j,u\right\rangle\right|^{1/j}\}$ is bounded, then there exists an $\epsilon>0$ such that $\{\epsilon^jf_j\}$ is strongly bounded.

Proof. For each $u \in E$, the element $Tu = \sum_{j=0}^{\infty} \left\langle f_j, u \right\rangle z^j$ belongs to \mathscr{O} . Since the composite map $E \xrightarrow{T} \mathscr{O} \to \mathscr{P}$ is clearly continuous, T is closed. Grothen-dieck's theorem implies that T maps E continuously into $\mathscr{H}(B_r)$ for some r>0, which implies that $\left|\left\langle f_j, u \right\rangle \right| \leq C(2/r)^j$ for each $u \in E$, with r independent of u. Our theorem follows, with $\epsilon = r/2$, by the uniform-boundedness theorem.

THEOREM 2. Let Ω be a region in \mathbb{R}^n , and suppose $f: \Omega \to E'$ is a function such that, for each u in the Fréchet space E, the map $x \to \langle f(x), u \rangle$ is analytic. Then f is strongly analytic.

Proof. If $x_0 \in \Omega$, then for each $u \in E$, $\frac{1}{h} \left\langle f(x_0 + h\epsilon_j) - f(x_0), u \right\rangle$ converges to $(\partial/\partial x_j) \left\langle f(x), u \right\rangle |_{x_0}$ as $h \to 0$, where $\{\epsilon_1, \cdots, \epsilon_n\}$ is the standard orthonormal basis of \mathbb{R}^n . The uniform boundedness theorem implies that there is an $f_j \in E'$ such that

$$\left\langle f_{j}, u \right\rangle = \frac{\partial}{\partial x_{i}} \left\langle f(x), u \right\rangle \Big|_{x_{0}}$$
 for all $u \in E$.

Received November 12, 1971.

Michigan Math. J. 19 (1972).