LIMITS OF NILPOTENT AND QUASINILPOTENT OPERATORS

James H. Hedlund

The structure of the set of nilpotent operators on an infinite-dimensional Hilbert space is still incompletely described. Many natural questions, suggested by finite-dimensional results, remain to be answered. One such question, raised by P. R. Halmos [2, Question 7], asks for a description of the closure of the nilpotent operators in the uniform operator topology. In this paper, we show that most self-adjoint operators are not limits of nilpotent or quasinilpotent operators, but that many interesting (and not quasinilpotent) weighted shifts are. The results suggest that a simple characterization of the closure of the nilpotent operators may be difficult to discover.

Throughout this paper, H will be a separable complex Hilbert space, usually infinite-dimensional, and an operator will be a bounded linear transformation on H. We shall denote by $\mathscr N$ the set of nilpotent operators on H (all operators S with $S^k = 0$ for some k), by $\mathscr Q$ the set of quasinilpotent operators (all S with $r(S) = \lim_{N \to \infty} \|S^k\|^{1/k} = 0$), and by $\mathscr N^-$ and $\mathscr Q^-$ the respective closures in the uniform operator topology. If H is finite-dimensional, then $\mathscr N^- = \mathscr N = \mathscr Q = \mathscr Q^-$; in general, $\mathscr N$ is properly contained in $\mathscr Q$. It is still unknown whether $\mathscr Q \subset \mathscr N^-$. We follow the notation of [1, p. 37] for the various parts of the spectrum of an operator: Λ will denote the spectrum, Π_0 the point spectrum, Π the approximate point spectrum, and Γ the compression spectrum.

1. SPECTRAL PROPERTIES OF N AND Q

Since the quasinilpotent operators are precisely those whose spectrum is the single point $\{0\}$, the problem of characterizing \mathscr{Q}^- is that of describing which operators can be approximated by operators with spectrum $\{0\}$. Clearly, the spectral radius is discontinuous near such operators. It is thus natural to expect that spectral properties will give partial and incomplete information about \mathscr{Q}^- . Note that it suffices to investigate operators of norm 1, since \mathscr{N} and \mathscr{Q} are closed under multiplication by scalars.

PROPOSITION 1. If T is bounded below by ε , then

$$d(T, \mathcal{Q}) = \inf \{ \|T - S\| : S \in \mathcal{Q} \} \ge \epsilon .$$

Proof. If S is quasinilpotent, then $0 \in \Pi(S)$. Thus there exists a sequence of vectors $\{x_n\}$ with $\|x_n\| = 1$ and $\|Sx_n\| \to 0$. Hence

$$\|(T - S)x_n\| \ge \|Tx_n\| - \|Sx_n\| \ge \varepsilon - \|Sx_n\| \to \varepsilon$$
,

so that $\|T - S\| \ge \epsilon$.

COROLLARY 1. If T is invertible, then T $\notin \mathcal{Q}^-$. Equivalently, if T $\in \mathcal{Q}^-$, then $0 \in \Lambda(T)$.

Received January 19, 1972.

Michigan Math. J. 19 (1972).