PRODUCT MANIFOLDS THAT ARE NOT NEGATIVE SPACE FORMS

Patrick Eberlein

INTRODUCTION

In [2], it was shown that for every integer $k\geq 1$ there exist compact Riemannian manifolds M of dimension 4k and sectional curvature K (-4 \leq K \leq -1) that do not admit a Riemannian metric with K \equiv -1. In this paper, we show by a different method that there exist many (noncompact) product manifolds M that admit a complete metric with sectional curvature K \leq -1, but admit no complete metric with K \equiv -1. For example, if B is a compact Riemannian manifold of dimension n \geq 2 and sectional curvature K < 0, then M = R \times B \times S 1 , where S 1 and R denote the unit circle and real line, is such a manifold.

If M is a complete Riemannian manifold with sectional curvature $K \leq 0$, then M is a quotient H/D, where H is a complete, simply connected manifold with $K \leq 0$, and D is a properly discontinuous group of isometries of H. As in [3], one may construct the set $H(\infty)$ of points at infinity for H and define a limit set $L(D) \subset H(\infty)$ for the group D. If M = H/D has curvature $K \leq -1$, then the limit set must be one of three types described in Theorem 1. If $\pi_1(M)$ is a nontrivial direct product, then the discussion of monic groups shows that L(D) must be of the first type. If M admits a complete metric with $K \equiv -1$, and if L(D) is of the first type, then by Proposition $4, \pi_1(M)$ is isomorphic to $\pi_1(M')$, where M' is a complete flat manifold. Using warped products, we construct manifolds M with sectional curvature $K \leq -1$ such that $\pi_1(M)$ is a nontrivial direct product not isomorphic to $\pi_1(M')$ for any flat manifold M'. Our result has the defect that the curvature of M is not bounded below; but this defect is inherent in our method.

The necessary background results are developed in [1] and [3], and more detailed discussions of points at infinity, limit sets, monic groups, and warped products may be found there with proofs of our unproved assertions.

MANIFOLDS WITH SECTIONAL CURVATURE $K \leq 0$

Let H denote a complete, simply connected Riemannian manifold of dimension $n\geq 2$ and sectional curvature $K\leq 0$. Unit-speed geodesics γ and σ in H are asymptotic if there exists a number c>0 such that $d(\gamma t,\,\sigma t)\leq c$ for all $t\geq 0$, where d denotes the Riemannian metric of H. The relation of being asymptotic is an equivalence relation on the geodesics of H (which shall always be assumed to have unit speed), and the equivalence classes are points at infinity for H. If $H(\infty)$ denotes the set of points at infinity, then the space $\overline{H}=H\cup H(\infty)$ with a natural topology is homeomorphic to the closed unit ball in R^n , and $H(\infty)$ is homeomorphic to the bounding sphere S^{n-1} .

Received June 4, 1971.

This research was supported in part by NSF Grants GP-11476 and GP-20096.

Michigan Math. J. 19 (1972).