SINGULAR INNER FUNCTIONS WITH DERIVATIVE IN BP

H. A. Allen and C. L. Belna

For $0 , the space <math display="inline">B^p$ is the class of all functions f(z) analytic in D = $\left\{ \left.z\right| \left.z\right| < 1\right\}$ for which

$$\|f\|_{p} = \int_{0}^{1} \int_{0}^{2\pi} |f(re^{i\theta})| (1 - r)^{1/p-2} d\theta dr < \infty.$$

For basic properties of B^p, see [4].

A singular inner function is a function of the form

$$S_{\mu}(z) = \exp \int \frac{z + e^{it}}{z - e^{it}} d\mu(e^{it})$$
,

where μ is a positive measure on the unit circle, singular with respect to Lebesgue measure. For a discussion of inner functions, see [3] or [5].

In [1], J. G. Caughran and A. L. Shields asked whether there exists a singular inner function with derivative in the Hardy class $\mathrm{H}^{1/2}$. M. R. Cullen [2] conjectured that no singular inner function has derivative in the larger space $\mathrm{B}^{1/2}$. In this paper, we disprove the conjecture of Cullen but leave open the question of Caughran and Shields.

THEOREM. Let the measure μ consist of discrete masses a_j such that the sequence $\left\{a_j\right\}_{j=1}^\infty$ belongs to some space $\ell^{1/q}$ (1 < q < ∞), and let

$$\frac{1}{p}+\frac{1}{q}=1, \quad \gamma<\frac{2p}{4p-1}.$$

Then $S'_{\mu} \in B^{\gamma}$. In particular, $S'_{\mu} \in B^{1/2}$.

Proof. The formula $S_{\mu}(z) = \exp \sum_{j=1}^{\infty} a_j \frac{z + e^{it_j}}{z - e^{it_j}}$ implies that

$$S'_{\mu}(z) = S_{\mu}(z) \sum_{j=1}^{\infty} \frac{-2a_{j} e^{it_{j}}}{(z - e^{it_{j}})^{2}}.$$

Since

$$\Re \frac{z + e^{itj}}{z - e^{itj}} = 1 - 2 \frac{1 - r \cos(\theta - t_j)}{|z - e^{itj}|^2} \qquad (z = re^{i\theta}),$$

we have the formula

Received July 22, 1971.

Michigan Math. J. 19 (1972).