NORMAL ANALYTIC FUNCTIONS AND LINDELÖF'S THEOREM

Stephen Dragosh

- 1. INTRODUCTION

This paper deals with various weakenings of the hypotheses in Lindelöf's classical limit theorem for bounded analytic functions.

Let D and Γ denote the unit disk |z| < 1 and the unit circle |z| = 1, respectively. The open subarc of Γ with endpoints z = 1 and $\zeta = e^{i\theta}$ $(0 < \theta < 2\pi)$ is denoted by A(0, θ), while the domain bounded by the arc A(0, θ) and the closed chord subtending A(0, θ) is denoted by G(0, θ). For points $\zeta = e^{i\theta}$, we write $\zeta \to 1^+$ if $\theta \to 0^+$.

Lindelöf's theorem [1, p. 42] is the following proposition.

THEOREM L. Suppose that f is a bounded analytic function in D, that

(1)
$$\lim_{\zeta \to 1^{+}} |f(\zeta)| = \lim_{\zeta \to 1^{+}} (\lim \sup_{z \to \zeta} |f(z)|) = 0,$$

and that $0 < \theta < 2\pi$. Then $f(z) \to 0$ as $z \to 1$ in $G(0, \theta)$.

It is known [2, Theorem 5.6] that the condition (1) can be replaced by the condition

(2)
$$\lim_{\zeta \to 1^+, \zeta \in \Gamma - E} |f(\zeta)| = 0,$$

where $\mu E = 0$ (μ denotes Lebesgue measure on Γ). Moreover, it follows from a theorem of C. Carathéodory (see [1, p. 207] or [2, Theorem 5.5]) that if the radial limits of f satisfy the condition

$$\left| \lim_{r \to 1} f(r\zeta) \right| < \varepsilon$$

for almost every point ζ in some arc A(0, θ), then

$$|f(\zeta)| \leq \varepsilon \quad (\zeta \in A(0, \theta)).$$

(The latter inequality can also be deduced from the representation of f by its Poisson integral.) Thus we can replace the condition (1) in Theorem L by the condition

(3)
$$\lim_{\zeta \to 1^+, \zeta \in \Gamma - E \quad r \to 1} (\lim_{\zeta \to 1} f(r\zeta)) = 0,$$

where $\mu E = 0$ and f has a radial limit at each $\zeta \in \Gamma - E$.

Received August 25, 1971.

Michigan Math. J. 19 (1972).