STABILIZATION OF SELF-EQUIVALENCES OF THE PSEUDOPROJECTIVE SPACES

Allan J. Sieradski

1. INTRODUCTION

For a space X with basepoint, let $\mathcal{E}(X)$ denote the group of homotopy classes of homotopy equivalences of X into itself, the group operation being composition. We refer to $\mathcal{E}(X)$ as the self-equivalence group of X. The operation of suspending one homotopy equivalence to obtain another determines a sequence of homomorphisms

$$\mathcal{E}(\mathbf{X}) \xrightarrow{\Sigma} \mathcal{E}(\Sigma \mathbf{X}) \xrightarrow{\Sigma} \cdots \xrightarrow{\Sigma} \mathcal{E}(\Sigma^n \mathbf{X}) \xrightarrow{\Sigma} \cdots$$

connecting the self-equivalence groups of the iterated suspensions of X. When X is a finite CW complex, this sequence stabilizes at some stage $\mathcal{E}(\Sigma^n X)$ ($0 \le n \le \dim X$), in that it consists of isomorphisms thereafter.

We describe this stabilization process in the case where X is the pseudoprojective plane of order q, denoted by P_q^l . As a starting point we take P. Olum's description [6] of the rather rich structure of $\mathcal{E}(P_q^l)$. Let Γ_q denote the quotient of the integral polynomial ring $Z\left[x\right]$ modulo the ideal generated by $1+x+\cdots+x^{q-1}$, and let E_q denote the group whose elements are the units of Γ_q and whose multiplication \circ is defined by the formula

$$\left\{ \sum_{i} n_{i} x^{i} \right\} \circ \left\{ \sum_{i} m_{i} x^{i} \right\} = \left\{ \sum_{i} n_{i} x^{i} \right\} \left\{ \sum_{i} m_{i} x^{is} \right\},$$

where $s = \sum n_i \pmod{q}$ is called the augmentation of $\left\{\sum n_i x^i\right\}$.

THEOREM 1 ([6, Theorems 3.4 and 3.5, and Remark 3.6]). The self-equivalence group $\mathcal{E}(P_q^l)$ of the pseudoprojective plane P_q^l is isomorphic to the group E_q . Moreover, E_q is isomorphic to the semidirect product $U_q^l \times_\theta Z_q^*$ of the group U_q^l (of units of Γ_q of augmentation 1) and the multiplicative group Z_q^* (of reduced residues modulo q) whose operators $\theta\colon Z_q^*\to \operatorname{Aut} U_q^l$ are given by the relation $\theta(s)$ ($\left\{\sum n_i\,x^i\right\}$) = $\left\{\sum n_i\,x^{is}\right\}$.

Since the pseudoprojective plane P_q^l admits a two-dimensional cellular decomposition, namely, $S^1 \cup_q e^2$, the stabilization process takes at most two steps; hence the relevant suspensions are the pseudoprojective spaces $P_q^2 = S^2 \cup_q e^3$ and $P_q^3 = S^3 \cup_q e^4$. Our description of the stabilization process is summarized by the following two theorems.

THEOREM 2. The self-equivalence group $E(P_q^2)$ is isomorphic to the semidirect product $Z_q \times_{\varphi} Z_q^*$ of the cyclic group Z_q of order q and the group Z_q^* whose operators $\varphi\colon Z_q^* \to \operatorname{Aut} Z_q$ are given by the canonical isomorphism

Received November 12, 1970.

Michigan Math. J. 19 (1972).