APPROXIMATIONS OF DOUBLY SUBSTOCHASTIC OPERATORS

C. W. Kim

1. INTRODUCTION AND PRELIMINARIES

We prove three approximation theorems for positive contractions T on $L_1[0,\infty)$ having at least one of the two properties T1=1 and $T^*1=1$. The main results concern approximations of such operators by convex combinations of those operators induced by invertible measure-preserving maps on $[0,\infty)$ in well-known operator topologies.

Let X, \mathfrak{F} , and μ denote the nonnegative real half-line, the class of Lebesgue measurable sets, and Lebesgue measure. On X, we shall consider only \mathfrak{F} -measurable real functions (modulo μ -equivalence), and by a set on X we shall always mean an element of \mathfrak{F} . We shall omit the phrase "almost everywhere," it being understood wherever applicable. We assume $1 \leq p \leq \infty$. Let $L_p = L_p(X, \, \mathfrak{F}, \, \mu)$, and let $[L_p]$ be the Banach space of bounded linear operators from L_p into itself. We say that T is a *positive contraction* on L_p if T \in $[L_p]$, Tf \geq 0 for each f $(0 \leq f \in L_p)$, and $\|T\|_p \leq 1$.

For each positive contraction T on L_1 , the adjoint T^* determined by the equation $\int_X (Tf) g \, d\mu = \int_X f T^* g \, d\mu$ for $f \in L_1$ and $g \in L_\infty$ is a positive contraction on

 L_{∞} . The operators T and T* can be extended uniquely to positive linear operators on the cone of nonnegative numerical functions u and v as follows:

$$\label{eq:tu} {\rm Tu} \, = \, \lim_n \, {\rm Tf}_n \, , \qquad \mbox{where } \, 0 \leq {\rm f}_n \, \in \, {\rm L}_1 \, , \, \, {\rm f}_n \, \stackrel{\uparrow}{\mbox{\downarrow}} \, {\rm u} \, ,$$

$$T^*v = \lim_{n} T^*g_n$$
, where $0 \le g_n \in L_\infty$, $g_n \uparrow v$.

The extensions satisfy the equation $\int_X (Tu) \, v \, d\mu = \int_X u T^* \, v \, d\mu$. In particular, suppose T1 < 1. This condition is equivalent to the condition that

$$\int_{\mathbf{X}} \mathbf{T}^* \mathbf{g} \, \mathrm{d}\mu \, \leq \int_{\mathbf{X}} \mathbf{g} \, \mathrm{d}\mu$$

for $0 \le g \in L_1 \cap L_\infty$, and thus T^* is uniquely extended to a positive contraction on L_1 . The extended operator will also be denoted by T^* . Observe that in this case T is also a positive contraction on L_∞ . We shall always assume that T and T^* represent the extended operators.

Received March 5, 1971.

This work was supported in part by N.R.C. Grant A-4844.

Michigan Math. J. 19 (1972).