HELSON SETS IN COMPACT AND LOCALLY COMPACT GROUPS

Charles F. Dunkl and Donald E. Ramirez

We continue our investigation (begun in [1] and [4]) of the measure space $M_0(G)$, where G denotes an infinite, nondiscrete, locally compact group, not necessarily abelian. In the present paper, we show that each measure in $M_0(G)$ is continuous. We further show that if G is compact or metrizable, then a Helson set cannot support a nonzero measure in $M_0(G)$ (a *Helson set* is a compact set P in G such that every continuous function on P can be extended to a function in the Fourier algebra A(G) of the group G).

Let G denote an infinite, nondiscrete, locally compact group (not necessarily abelian) with left-invariant Haar measure m_G , and let M(G) denote the space of finite regular Borel measures on G. We use the notation and machinery developed by P. Eymard [5] as well as that in [2]. Let Σ denote the equivalence classes of the continuous unitary representations on G, and for $\pi \in \Sigma$, let \mathscr{H}_{π} denote the representation space. For $\mu \in M(G)$, we define the function $\hat{\mu}$ on Σ by

$$\pi \mapsto \hat{\mu}_{\pi} = \int_{G} \pi(x) d\mu(x).$$

For $\mathscr{G} \subset \Sigma$, let

$$\|\mu\|_{\mathscr{S}} = \sup \{\|\hat{\mu}_{\pi}\|_{\infty} \colon \pi \in \mathscr{S} \},\$$

where $\|\hat{\mu}_{\pi}\|_{\infty}$ denotes the operator norm on \mathcal{H}_{π} . We define $C^*(G)$ to be the completion of $L^1(G)$ in $\|\cdot\|_{\Sigma}$ (see [5, p. 187]). Let $\{\rho\}$ denote the subset of Σ containing just the left-regular representation of G on $L^2(G)$. Let $C^*(G)$ denote the completion of $L^1(G)$ in $\|\cdot\|_{\rho}$ (see [5, p. 187]). If G is abelian or compact, then $C^*(G) = C^*_{\rho}(G)$.

If $\mu \in M(G)$, we let $\rho(\mu)$ denote the bounded operator defined on $L^2(G)$ by $h \mapsto \mu * h$ ($h \in L^2(G)$) with operator norm $\|\rho(\mu)\|_{\rho}$. Let $\mathscr{B}(L^2(G))$ denote the bounded operators on $L^2(G)$. Then $C^*_{\rho}(G)$ can be identified with the closure in $\mathscr{B}(L^2(G))$ of the set $\rho(L^1(G)) = \{\rho(f): f \in L^1(G)\}$. If G is abelian, then $C^*_{\rho}(G)$ is isomorphic to the space $C_0(\hat{G})$ of continuous functions on the dual group \hat{G} that vanish at infinity; and if G is compact, then $C^*_{\rho}(G) \cong \mathscr{C}_0(\hat{G})$ (see [1]).

Let VN(G) denote the von Neumann subalgebra of $\mathscr{B}(L^2(G))$ generated by the left translation operators (see [5, p. 210]). If $\mu \in M(G)$, then $\rho(\mu) \in VN(G)$. Furthermore, we have the inclusion $C^*_{\rho}(G) \subset VN(G)$. If G is abelian, then $VN(G) \cong L^{\infty}(\hat{G})$; and if G is compact, then $VN(G) \cong \mathscr{L}^{\infty}(\hat{G})$ (see [1]).

Let B(G) denote the linear subspace of $C^B(G)$ (the continuous bounded functions on G) spanned by the continuous, positive-definite functions. Then B(G) can be

Received June 4, 1970.

This research was supported in part by NSF contract GP-8981.

Michigan Math. J. 19 (1972).