## ON SUBNORMAL SUBGROUPS OF FUNDAMENTAL GROUPS OF CERTAIN 3-MANIFOLDS

## Wolfgang H. Heil

Let M be a  $P^2$ -irreducible 3-manifold. In [2], it is shown that if F is a 2-sided, closed, incompressible surface in M such that  $i_*\pi_1(F)$  is normal in  $\pi_1(M)$ , then M is either a fibre bundle over  $S^1$  with fibre F, or a line bundle over a closed surface G (and F is then parallel to  $\partial M$ ), or a union of two such line bundles. In particular, if  $\partial M \neq \emptyset$  and  $i_*\pi_1(F)$  is normal in  $\pi_1(M)$ , then  $i_*\pi_1(F)$  is of index 2 or 1 in  $\pi_1(M)$ . In this paper, we show that the same result holds if we replace "normal" by "subnormal." Hence  $i_*\pi_1(F)$  is subnormal in  $\pi_1(M)$  if and only if it is normal in  $\pi_1(M)$ . An analogous result holds for noncontractible, simple closed curves in 2-manifolds. By way of an application, we classify the sufficiently large 3-manifolds that have fundamental groups each of whose subgroups is subnormal.

We work throughout in the piecewise linear category. "A surface  $F \subset M$ " always means a 2-sided embedded surface in M. We say that F is *incompressible* in M if genus  $(F) \geq 1$  and  $\ker(i_*\pi_1(F) \to \pi_1(M)) = 0$ , where i:  $F \to M$  denotes inclusion. A 3-manifold is called  $P^2$ -irreducible if M is irreducible and contains no (2-sided) projective planes.

A subgroup S of a group G is called *subnormal* (in G) if there exists a finite sequence of subgroups  $S_1, \dots, S_n$  of G such that  $S \triangleleft S_1 \triangleleft \dots S_n \triangleleft G$ .

I wish to thank John Hempel and John Ledlie for helpful conversations.

## 1. SUBNORMAL SUBGROUPS OF $\pi_1(M)$

If F is a surface in M, let  $i_*: \pi_1(F) \to \pi_1(M)$  denote the homomorphism induced by inclusion.

THEOREM 1. Let M be a compact,  $P^2$ -irreducible 3-manifold, and suppose F is a 2-sided, closed, incompressible surface in M such that  $i_*\pi_1(F)$  is subnormal in  $\pi_1(M)$ . Then one of the following holds:

- (a) M is a fibre bundle over  $S^1$  with fiber F.
- (b)  $M \cong F \times I$ .
- (c) M is a twisted line bundle over a closed surface G, and F is parallel to  $\partial M$ .
  - (d) F separates M into two twisted line bundles of type (c).

LEMMA 1. If S is subnormal in G and  $U \subseteq G$  is a subgroup containing S, then S is subnormal in U.

*Proof.* We have subgroups  $S_1$ ,  $\cdots$ ,  $S_n$  of G such that  $S \lhd S_1 \lhd \cdots S_n \lhd G$ . Forming intersections with U, we obtain the sequence  $S \lhd S_1 \cap U \lhd \cdots \lhd S_n \cap U \lhd U$ , and this proves the lemma.

Received April 15, 1970.

Michigan Math. J. 18 (1971).