MEROMORPHIC FUNCTIONS OF BOUNDED BOUNDARY ROTATION

James Noonan

1. INTRODUCTION

For $k \ge 2$, let Λ_k denote the class of functions f, given by

(1.1)
$$f(z) = \frac{1}{z} + a_0 + a_1 z + \cdots,$$

that are analytic in $U = \{z: |z| < 1\}$ except for a simple pole at z = 0 and have an integral representation of the form

(1.2)
$$f'(z) = -\frac{1}{z^2} \exp \left\{ \int_0^{2\pi} \log(1 - ze^{-it}) dm(t) \right\},$$

where m is a real-valued function of bounded variation on $[0, 2\pi]$ satisfying the conditions

(1.3)
$$\int_0^{2\pi} dm(t) = 2, \quad \int_0^{2\pi} |dm(t)| \le k, \quad \int_0^{2\pi} e^{-it} dm(t) = 0.$$

Simple calculations show that the third of conditions (1.3) guarantees that the singularity of f at z = 0 is a simple pole with no logarithmic term.

The class Λ_k was introduced by J. Pfaltzgraff and B. Pinchuk in [5], where they showed that $f \in \Lambda_k$ if and only if f maps the unit disc onto a domain containing infinity, with boundary rotation at most $k\pi$ (for a definition of this concept, see [4]). Hence the union of the classes Λ_k is called the family of meromorphic functions of bounded boundary rotation.

Let V_k denote the class of functions g, given by

$$g(z) = z + b_2 z^2 + \cdots,$$

that are analytic in U, satisfy the condition $g'(z) \neq 0$ in U, and map U onto a domain with boundary rotation at most $k\pi$. V. Paatero [4] showed that $g \in V_k$ if and only if

(1.4)
$$g'(z) = \exp \left\{ \int_0^{2\pi} \log (1 - ze^{-it})^{-1} dm(t) \right\},$$

Michigan Math. J. 18 (1971).

Received July 31, 1970.

The author was supported by an NDEA Graduate Fellowship at the University of Maryland.