## COMPACT, CONTRACTIBLE n-MANIFOLDS AND THEIR BOUNDARIES

## T. M. Price

The purpose of this paper is to show that for  $n \ge 6$  the function, assigning M to  $\partial M$ , from the set of compact, contractible n-manifolds to the set of homology (n-1)-spheres is a bijection. (A similar result has been announced by M. Kato, see [5].) We also show that for M as above, the group of concordance classes of homeomorphisms of M onto itself is isomorphic to the group of concordance classes of homeomorphisms of  $\partial M$  onto itself.

We consider both PL and topological manifolds and maps in this paper. The term manifold allows the possibility that the boundary is not empty. We use  $\partial M$  to denote the boundary of a manifold M and int M to denote the interior of M. We use  $D^n$  and  $S^n$  to denote the standard n-cell and n-sphere. By the term disk we mean a 2-cell. We use A\*B to denote the join of spaces A and B. If M is a manifold and P a subpolyhedron of M, then N(P, M) denotes a regular neighborhood of P in M, see J. F. P. Hudson and E. C. Zeeman [4]. Finally, if M and N are manifolds and h:  $\partial M \to \partial N$  is a homeomorphism, we denote by  $M \cup_h N$  the manifold obtained by identifying  $x \in \partial M$  with  $h(x) \in \partial N$ . We let  $\rho_M$  and  $\rho_N$  denote the inclusions of M and N, respectively, into  $M \cup_h N$ . Hence

$$\rho_{\mathbf{N}}^{-1} \circ \rho_{\mathbf{M}} \mid \partial \mathbf{M} = \mathbf{h}.$$

Furthermore, if  $C \subseteq M$  and  $C' \subseteq N$ , then  $C \cup_h C'$  denotes  $\rho_M(C) \cup \rho_N(C')$ . Although C and C' may also be manifolds with boundary, no confusion should arise between the two uses of the notation  $\cup_h$ . We shall also not distinguish between  $A \subseteq M$  and  $\rho_M(A) \subseteq M \cup_h N$  when no confusion can arise.

LEMMA 1. Let M and N be contractible PL n-manifolds (n  $\geq$  5). Let h:  $\partial M \to \partial N$  be a homeomorphism,  $J \subseteq \partial M$  a simple closed curve,  $D \subseteq M$  a disk such that  $D \cap \partial M = J$ . Suppose T is a regular neighborhood of J in  $\partial M$ , and let C be a regular neighborhood of  $D \cup T$  in M, relative to  $cl(\partial M - T)$ . Moreover, D' denotes a disk in N such that  $D' \cap \partial N = h(J)$ , and C' denotes a regular neighborhood of  $D' \cup h(T)$  in N, relative to  $cl(\partial N - h(T))$ . Then there exists a PL homeomorphism

f: 
$$(C \cup_h C', T, D \cup_h D') \rightarrow (S^2 \times D^{n-2}, S^1 \times D^{n-2}, S^2)$$
,

where  $C \cup_h C'$  and  $D \cup_h D'$  are subsets of  $M \cup_h N$ .

*Proof.* Consider  $S = M \cup_h N$ . By Van Kampen's theorem, S is simply connected. By the Mayer-Vietoris sequence, S has the same homology groups as  $\partial M$ . From the Lefschetz duality theorem [2], we obtain the following diagram:

Received December 12, 1969.

This research was supported in part by the National Science Foundation.

Michigan Math. J. 18 (1971).