ON THE MARX CONJECTURE FOR A CLASS OF CLOSE-TO-CONVEX FUNCTIONS

J. A. Pfaltzgraff

We let $G(z) \prec H(z)$ (|z| < R) mean that G(z) is subordinate to H(z) in |z| < R in the sense that G(z) and H(z) are regular in the disk |z| < R, and for each fixed r < R, the image of the disk $|z| \le r$ under G(z) is contained in its image under H(z). Let S_{α}^* ($0 \le \alpha < 1$) denote the class of functions that are starlike of order α in the open unit disk $E = \{z: |z| < 1\}$; that is, f(z) belongs to S_{α}^* if and only if f(z) is regular in E, f(0) = 0, f'(0) = 1, and

$$\Re \left\{ zf'(z)/f(z) \right\} > \alpha$$

for every z in E.

In 1932, A. Marx [3] conjectured that for every $f(z) \in S_0^*$, the function f'(z) is subordinate to k'(z) in E, where $k(z) = z/(1-z)^2$ is the Koebe function. B. Pinchuk [5] and R. McLaughlin [4] have studied the corresponding conjecture for the classes S_{α}^* , namely that $f'(z) \prec k_{\alpha}'(z)$ in E for every $f(z) \in S_{\alpha}^*$, where

$$k_{\alpha}(z) = z/(1-z)^{2-2\alpha}$$
.

For each $\alpha \in [0, 1)$, McLaughlin [4] has determined a number r_{α} (0 < r_{α} < 1) such that the Marx conjecture for S_{α}^{*} holds in the disk $|z| \le r_{\alpha}$. The constant $r_{0} = 0.736 \cdots$ in [4] had been discovered earlier by P. L. Duren [1]. For $\alpha = 1/2$, it was shown that $r_{1/2} = 0.81046 \cdots$ [4]. In this note, we consider a class of close-to-convex functions that contains $S_{1/2}^{*}$ as a proper subclass, and we show that for every f(z) in this class, the relation $f'(z) < k'_{1/2}(z)$ holds in the entire disk E.

For $0 \le \alpha < 1$ and $0 \le \beta < 1$, we say that $f(z) \in \mathcal{K}(\alpha, \beta)$ if and only if

- (i) f(z) is regular in E, f(0) = 0, f'(0) = 1, and
- (ii) for some $g(z) \in S_{\beta}^*$,

(1)
$$\Re \left\{ zf'(z)/g(z) \right\} > \alpha$$

for every z in E. We note that $\mathcal{K}(\alpha, \beta)$ is a subclass of the class of close-to-convex functions of order α and type β introduced by R. J. Libera [2]. Instead of condition (ii), Libera required that (1) hold for some g(z) such that ag(z) ϵ S $_{\alpha}^{*}$ for some complex number a of modulus 1 [2, Definition (1.2)]. The class S $_{\alpha}^{*}$ is the subset of functions f(z) ϵ $\mathcal{K}(\alpha, \alpha)$ such that g(z) = f(z) in (1).

We shall need the Herglotz representations for the classes S_{β}^* and $\mathcal{K}(\alpha, \beta)$. Let I denote the class of nondecreasing functions with total variation 1 on the interval $[0, 2\pi]$. It is well known that $g \in S_{\beta}^*$ if and only if

Received August 14, 1970.

This research was supported by Army Research Office Grant No. DA-ARO-D-31-124-G1151.

Michigan Math. J. 18 (1971).