RIESZ POTENTIALS, k, p-CAPACITY, AND p-MODULES

Hans Wallin

1. INTRODUCTION

Let R^m denote m-dimensional Euclidean space with points $x=(x_1,\,x_2,\,\cdots,\,x_m)$ and Euclidean norm $\|x\|$. For $p\geq 1,$ we denote by $\|f\|_p$ the L^p -norm of f taken over the whole space R^m . Let $s=(s_1,\,s_2,\,\cdots,\,s_m)$ be a multi-index with length $|s|=\sum s_i$, and let D^sf be the corresponding derivative of f of order |s|. As usual, C_0^∞ is the class of all infinitely differentiable functions with compact support. Finally, k is a positive integer, and F is a compact subset of R^m .

A measure of the size of a set F is given by the k, p-capacity of F, which we define as follows.

Definition 1. The k, p-capacity of F is

$$\Gamma_{k,p}(F) = \inf_{f} \sum_{|s| \le k} \|D^s f\|_p^p,$$

where the infimum is taken over all $f \in C_0^\infty$ with $f \geq 1$ on F.

We get the same class of null-sets if in the definition we require all the functions f to have support in some fixed neighbourhood O of F. In fact, if $\phi \in C_0^{\infty}$ has support in O and $\phi = 1$ on F, then $f\phi$ has support in O, $f\phi \geq 1$ on F, and

$$\sum_{|s| \leq k} \|D^{s}(f\phi)\|_{p} \leq \text{const.} \sum_{|s| \leq k} \|D^{s}f\|_{p},$$

where the constant does not depend on f.

We also get the same class of null-sets if in the sum in the definition we take |s| = k instead of $|s| \le k$ (if $kp \ge m$, we must then assume that the support of f is a subset of a fixed sphere). This may be proved by means of inequalities of Sobolev type.

For k = 1, the notion of k, p-capacity was used by Serrin [4] in the investigation of removable singularities of partial differential equations. It has also been used in the theory of quasiconformal mappings in \mathbb{R}^{m} (Gehring [3]).

By the Riesz potential of order α (0 < α < m) of the function f (or the α -potential of f) we shall mean the function U_{α}^{f} defined by

$$U_{\alpha}^{f}(x) = \int \frac{f(y) dy}{|x - y|^{m-\alpha}}.$$

The purpose of this paper is to prove the following theorem.

Received June 10, 1970.

Michigan Math. J. 18 (1971).