A MINKOWSKI AREA HAVING NO CONVEX EXTENSION

Edward Silverman

Let $A = E^4 \wedge E^4$, and let M be the set of all simple (decomposable) elements in A. Let $\{\lambda_i\}$ denote a set of nonnegative numbers whose sum is 1. Let h be a real-valued function on M. Then [3, p. 20] h is *weakly convex* on M if

$$h(\lambda_1 x_1 + \lambda_2 x_2) \leq \lambda_1 h(x_1) + \lambda_2 h(x_2)$$

whenever x_1 , $x_2 \in M$ and $\lambda_1 x_1 + \lambda_2 x_2 \in M$. Also, h is *convex* on M if

(a)
$$h\left(\sum_{i=1}^k \lambda_i x_i\right) \leq \sum_{i=1}^k \lambda_i h(x_i)$$

whenever $\{x_1, \dots, x_k\}$ is a finite set of points in M and $\sum_{i=1}^k \lambda_i x_i \in M$, and (b) there exists a linear function L on A with $L \leq h$ on M.

Suppose that h is convex on M, and let $q(x) = \inf \sum_{i=1}^k \lambda_i h(x_i)$, where the infimum is taken over all k-tuples $\{x_i\}_1^k$ of points in M and over all $\{\lambda_i\}_1^k$ such that $x = \sum_{i=1}^k \lambda_i x_i$. Then (see [3, p. 21]) q extends h to A and is convex.

Let K be a central convex body in E^4 with its center at the origin. If $R \in M$ and $\mathscr R$ is the plane determined by R, let $f(R) = |R|/e(K \cap \mathscr R)$, where $e(K \cap \mathscr R)$ is the Euclidean area of $K \cap \mathscr R$. It is known that the Minkowski area f is weakly convex [4, p. 62]. We shall show that, for suitable K, f is not convex; this answers a question of Busemann and Petty [2, Problem 10]. This problem was discussed in greater detail in [4] and listed again in [3, p. 33].

Let $\mathbf{r^i}=(\mathbf{r^i_1},\,\mathbf{r^i_2})$ (i ϵ I = {1, 2, 3, 4}) be linear functions on E^2 that are linearly independent. Let p_1 and p_3 in E^2 be determined by the equations $\mathbf{r^1}(p_1)=\mathbf{r^2}(p_1)=1$ and $\mathbf{r^2}(p_3)=\mathbf{r^3}(p_3)=1$. Then it is not difficult to verify that, except possibly for sign, the area of the parallelogram spanned by p_1 and p_3 is

$$\frac{[12] + [23] + [31]}{[12][23]}, \quad \text{where } [ij] = \det \begin{vmatrix} \mathbf{r}_1^i & \mathbf{r}_2^i \\ \mathbf{r}_1^j & \mathbf{r}_2^j \end{vmatrix}.$$

Thus, if P is a symmetric octagon whose consecutive sides, in appropriate order, are

$$-r^4 = 1$$
, $r^1 = 1$, $r^2 = 1$, $r^3 = 1$, $r^4 = 1$, $-r^1 = 1$, $-r^2 = 1$, $-r^3 = 1$,

then area $P = A = A_1 + A_2 + A_3 + A_4$, where

Received October 7, 1970.

This research was sponsored in part by the National Science Foundation, under Grant 6075-50-13955.

Michigan Math. J. 18 (1971).