SETS OF UNIQUENESS ON THE PRODUCT
OF COMPACT GROUPS

J. E. Coury

Let X = H:Z 1 X, be the product of countably many non-Abelian,' compact,
topological groups, and let i denote Haar measure on X. Let f,, be a coordinate
function of V(n) where V(n) different from 1, is a continuous, unitary, irreducible
representation (CUIR) of X,. For X = (x;, x2, **-) in X, define f(X) to be f,(x,).

A subset C of X is called a set of uniqueness with respect to a regular method
S of summability (or briefly, a Ug-set) if S-summability to 0 on the complement of

C of a series 2 cnf,, with complex coefficients ¢, implies that ¢, = 0 for each n.
Otherwise, C is called a set of multiplicity (an Mg-set).

Let d, be the dimension of the representation space of V(n) and set
M = sup {d,: n> 1}. We prove that if M < and u(C) < 1/2M, then C is a Ug-set.
If M = o, then every subset of X of measure 0 is a set of uniqueness. We also
demonstrate that if each X, is connected, then every subset of X of measure less
than 1/2 is a Ug-set.

1. PRELIMINARIES

Let g, and p denote normalized Haar measure on X, and X, respectively, and
write the identity element of X as e =(e;, ez, ***), where e, is the identity in X, .

For each n, choose @, in X, so that there exists a continuous, unitary, irre-
ducible reg)resentation v(n) of X, on a Hilbert space H, of dimension d,, > 2, for

which Vg’ # 1. (That such a choice is possible in every compact non-Abelian group
. n

G can be demonstrated as follows. Let a, b € G be such that ab # ba; then
aba~!b-1 is not the identity in G. By [2, (22.12)], we can find a CUIR V of G such
that Vaba'l b1 #I. If V were one-dimensional, we could conclude that

4 1=V, V, Vv =1, contrary to our choice of V.) It follows that a_ #e_.

aba~1b-
For v{n) let {‘é(ln), R E((in)} be an orthonormal basis of H,, such that
n

vglri gn) = ap)e() fork=1,2,,4d

n?»

where |7‘1(<n)! =1. Since V(®) = I, there exists an element q € {1, 2, ---, dn} for

which ?\((ln) #1. For such a q and arbitrary p # q, define the complex-valued
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