## SETS OF UNIQUENESS ON THE PRODUCT OF COMPACT GROUPS

## J. E. Coury

Let  $X = \prod_{n=1}^{\infty} X_n$  be the product of countably many non-Abelian, compact, topological groups, and let  $\mu$  denote Haar measure on X. Let  $f_n$  be a coordinate function of  $V^{(n)}$ , where  $V^{(n)}$ , different from 1, is a continuous, unitary, irreducible representation (CUIR) of  $X_n$ . For  $\bar{x} = (x_1, x_2, \cdots)$  in X, define  $f_n(\bar{x})$  to be  $f_n(x_n)$ .

A subset C of X is called a set of uniqueness with respect to a regular method S of summability (or briefly, a  $U_S$ -set) if S-summability to 0 on the complement of C of a series  $\sum c_n f_n$  with complex coefficients  $c_n$  implies that  $c_n$  = 0 for each n. Otherwise, C is called a set of multiplicity (an  $M_S$ -set).

Let  $d_n$  be the dimension of the representation space of  $V^{(n)}$ , and set  $M = \sup \left\{ d_n \colon n \geq 1 \right\}$ . We prove that if  $M < \infty$  and  $\mu(C) < 1/2M$ , then C is a  $U_S$ -set. If  $M = \infty$ , then every subset of X of measure 0 is a set of uniqueness. We also demonstrate that if each  $X_n$  is connected, then every subset of X of measure less than 1/2 is a  $U_S$ -set.

## 1. PRELIMINARIES

Let  $\mu_n$  and  $\mu$  denote normalized Haar measure on  $X_n$  and X, respectively, and write the identity element of X as  $\bar{e}$  = ( $e_1$ ,  $e_2$ ,  $\cdots$ ), where  $e_n$  is the identity in  $X_n$ .

For each n, choose  $\alpha_n$  in  $X_n$  so that there exists a continuous, unitary, irreducible representation  $V^{(n)}$  of  $X_n$ , on a Hilbert space  $H_n$  of dimension  $d_n \geq 2$ , for which  $V^{(n)}_{\alpha_n} \neq I$ . (That such a choice is possible in every compact non-Abelian group

G can be demonstrated as follows. Let a, b  $\epsilon$  G be such that ab  $\neq$  ba; then ab  $a^{-1}$  b<sup>-1</sup> is not the identity in G. By [2, (22.12)], we can find a CUIR V of G such that  $V_{aba}^{-1}_{b}^{-1} \neq I$ . If V were one-dimensional, we could conclude that

 $V_{aba}^{-1} = V_a V_b V_a^{-1} V_b^{-1} = I$ , contrary to our choice of V.) It follows that  $\alpha_n \neq e_n$ .

For  $V^{(n)},$  let  $\big\{\xi_1^{(n)},\,\cdots,\,\xi_{d_n}^{(n)}\big\}$  be an orthonormal basis of  $H_n$  such that

$$V_{\alpha_n}^{(n)} \xi_k^{(n)} = \lambda_k^{(n)} \xi_k^{(n)}$$
 for  $k = 1, 2, \dots, d_n$ ,

where  $\left|\lambda_k^{(n)}\right|=1$ . Since  $V^{(n)}\neq I$ , there exists an element  $q\in\{1,\,2,\,\cdots,\,d_n\}$  for which  $\lambda_q^{(n)}\neq 1$ . For such a q and arbitrary  $p\neq q$ , define the complex-valued

Received August 14, 1970.

The author expresses his sincere thanks to Professor E. Hewitt for his careful reading of this paper and his many good suggestions.

Michigan Math. J. 18 (1971).