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1. INTRODUCTION

Our purpose in this paper is to present some results concerning the operator
radii w (T) First we recall the pertinent definitions. Suppose T is an operator on
a H11bert space ¢ (in what follows, all Hilbert spaces are complex, and all opera-
tors are bounded and linear). We say the operator T belongs to the class Cp
(0 < p < =) if there exists a unitary operator U on some Hilbert space & such that
A contains o as a subspace and such that T"h = p P,,U"h for all h € &

(n=1, 2, ---). B. Sz.-Nagy and C. Foias introduced the classes Cp in [9] to provide
a unified framework for two results that we may state as follows: (i) (see Sz.-Nagy
[7]) T € C; if and only if |T| < 1; (ii) (see C. A. Berger [1]) T € C, if and only
if w(T) <1, where w(T) denotes the numerical radius of T, that is,

w(T) = sup {|(Th, h)|: h € o and |h] =

]

In our paper [5], we defined the operator radii wp( -) (0 < p <) by the equation
wp(T) = inf {furu>0and ulT e Cpl.

Independently, J. P. Williams used the same functions in [11]. The family of opera-
tor radii wp( -) includes the familiar operator norms |-} (=wy(-)) and

w( - ) (= wy( - )). We may adjoin the other well-known operator radius, namely, the
spectral radius v( - ), to this family in a natural way: the relation

lim wp(T) = p(T)

p—;oo

holds, so that we are led to define w(T) as v (T).

These and other known properties of the classes C, and the functions wpy( - )
are described carefully in Section 2. Sections 3, 4, and 5 contain results that we be-
lieve to be new. Experience suggests that wp(T) may be a convex function of p (for
fixed T) in every case. In Section 3, we obtam results in this direction. For ex-
ample, we show that if 0 < p;, pp < 2 and F(p) = (w(T)) -1, then

F((p; +p2)/2) > 2 F(p,) +(1 - N)F(py), ]
where 2= (2 - py)(2 - ,011 +2 - py)~1. From this inequality, we deduce that the
function (2 - p) (w (T))-! is increasing on (0, 1]. Combining this result with the
same inequality, we show that w (T) is indeed convex in the range (0, 1]. Section 4
contains convexity results of a less precise nature; there we simply demonstrate
the existence of certain convexity constants. In Section 5, we apply the earlier
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