AN ISOMORPHIC CHARACTERIZATION OF $L_{\rm p}$ AND c_0 -SPACES. II.

L. Tzafriri

In a previous paper of the same title [14], we have proved that a Banach space X is isomorphic either to c_0 or to an L_p -space $(1 \le p < \infty)$ over a finite measure space if and only if it is a cyclic space $X = \text{clm}\left\{Px_0 \middle| P \in \mathcal{B}\right\}$ $(x_0 \in X)$ relative to a σ -complete Boolean algebra \mathcal{B} of projections that has a two-sided estimate. The latter condition is to be interpreted in the sense that there exist a constant K and a function ψ (defined in the space of sequences of complex numbers) such that the inequalities

$$K^{-1}\psi(\{\|P_nx\|\}) \le \|x\| \le K\psi(\{\|P_nx\|\})$$

hold for each $x \in X$ and for each sequence of disjoint projections $P_n \in \mathcal{B}$ whose sum is the identity I.

Other characterizations in terms of Boolean algebras of projections with two-sided estimates have been obtained in [8] and [10] for the \mathscr{L}_p -spaces introduced by J. Lindenstrauss and A. Pełczyński in [7].

In the present paper we weaken this condition: we show that instead of the two-sided estimate for $\mathcal B$ we need merely the existence of a similar function ϕ , with values in $[0,\infty]$, such that a series $\sum_{n=1}^\infty P_n x_n$ is weakly convergent (not necessarily to a vector in X) if and only if $\phi(\{\|P_nx_n\|\})<\infty$ for each sequence $\{x_n\}$ $(x_n\in X)$ and each sequence of disjoint projections $P_n\in \mathcal B$. We shall use this result to prove our main theorem, which is another isomorphic characterization of c_0 and L_p , this time involving the existence of positive projections on every sublattice of a σ -Dedekind complete (conditionally σ -complete) Banach lattice. This theorem represents an isomorphic version of a recent result of T. Ando [1].

1. CYCLIC SPACES ISOMORPHIC TO $\mathbf{L}_{\mathbf{p}}$ AND $\mathbf{c}_{\mathbf{0}}$

For the notions and the terminology used in this paper, we refer the reader to [14] (see also [2], [3], and [7]).

We begin by showing that a cyclic space having enough subspaces isomorphic to ℓ_p (1 $\leq p < \infty$) is in fact isomorphic itself to an L_p -space for the same p.

PROPOSITION 1. A Banach space X is isomorphic to an L_p -space (1 \leq p $< \infty$) over a finite measure space if and only if it is a cyclic space

$$X = \mathfrak{M}(x_0) = \operatorname{clm} \{Ex_0 \mid E \in \mathcal{E}\}\$$

relative to a $\sigma\text{-complete Boolean algebra } E$ of projections such that for each $x \in X$ and each infinite sequence of disjoint projections $E_n \in E$ $(E_n x \neq 0; \ n=1, \, 2, \, \cdots)$ the basis $\left\{E_n x \middle/ \left\|E_n x\right\|\right\}$ is equivalent to the natural basis of ℓ_p .

Received November 12, 1969.

Michigan Math. J. 18 (1971).