ON THE POISSON-STIELTJES REPRESENTATION FOR FUNCTIONS WITH BOUNDED REAL PART

F. B. Ryan

1. INTRODUCTION

The main purpose of this paper is to establish results that connect a Poisson-Stieltjes integral with boundary properties of the function it represents. A well-known theorem of Herglotz [5, p. 196] states that a function f holomorphic in |z| < 1 with positive real part has a Poisson-Stieltjes representation

(1.1)
$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) + i \Im f(0),$$

where μ is a nondecreasing function of bounded variation on $[-\pi, \pi]$. Briefly, we shall say that f is a *Herglotz* function with *mass distribution* μ if (1.1) holds. For such functions, Fatou's theorem [6, p. 46] shows that $\Re[f]$ has angular limit at e^{it_0} equal to $\mu'(t_0)$ wherever the derivative exists (including $\mu'(t_0) = +\infty$). We shall seek other relationships that connect f and its mass distribution μ .

THEOREM 1. If μ is the mass distribution for a Herglotz function f, and $\sup \Re[f] < \infty$, then μ is nondecreasing and absolutely continuous and has bounded Dini derivates.

In fact, every difference quotient of μ is bounded by the bounds on $\Re[f]$. Example 1 shows that f as distinguished from $\Re[f]$ may nevertheless be unbounded.

Further information about μ is obtained under the condition

$$\int\!\int_{G} |f'(\sigma)|^2 d\sigma < \infty,$$

where G is a domain of the form $\{|z| < 1\} \cap \{|z - \zeta| < r\}, |\zeta| = 1$. The integral represents the area of f(G) on the Riemann surface associated with f. Condition (1.2) has been used extensively in the boundary theory of conformal mapping [1]. We shall say that f has the *finite-area property* at ζ ($|\zeta| = 1$) if (1.2) holds for some r > 0 (for brevity, we occasionally write $f \in FAP(\zeta)$). The usefulness of this condition arises from the fact that if

$$G_n = \{ |z| < 1 \} \cap \{ r_{n+1} < |z - \zeta| < r_n \}$$

and $r_n \to 0$ as $n \to \infty$, then

(1.3)
$$\iint_{G_n} |f'(\sigma)|^2 d\sigma = o(1) \quad (n \to \infty) .$$

Received June 9, 1969.

Michigan Math. J. 17 (1970).