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Let M be a Riemannian manifold, and let M be a compact hypersurface, that
is, a compact orientable submanifold of codimension 1 of M, possibly with boundary.
(Everything is assumed to be C*.) For sufficiently small s, let M s denote the set
of points lying on geodesics normal to M (and on a fixed side of M) at distance s
from M. Denoting the volume of Mg by (s), we call the real-valued function .«
(defined in a neighborhood of zero) the growth function of M. In [1], it is shown that
~+f is a polynomial of degree at most 1, for each compact hypersurface in ﬁ, if and
only if M is locally isometric to IRZ2. The purpose of the present note is to point
out that the technique employed in [1] actually allows us to prove the following theo-~
rem, which is more general and more satisfactory.

THEOREM. A Riemannian manifold has the property that the growth function
of each one of its compact hypersurfaces satisfies the linear diffevential equation

(1) A" +c =0

(where c is a fixed constant) if and only if it is a two-dimensional Riemannian mani-
fold of constant cuvvature equal to c.

Using the known facts about the solutions of equation (1), we may rephrase the
theorem in an equivalent way: the two-dimensional Riemannian manifolds of con-
stant zero curvature are characterized by the fact that their growth functions are
polynomials of degree at most 1; the two-dimensional Riemannian manifolds of con-
stant positive curvature ¢ are characterized by the fact that their growth functions
are expressible as linear combinations of cos v ¢s and sin v ¢ s; and the two-
dimensional Riemannian manifolds of constant negative curvature are characterized
by the fact that their growth functions are expressible as linear combinations of
cosh ¥-cs and sinh v -cs.

Before giving the proof of the theorem, we must recall the results proved in [1].
We let M be a compact hypersurface of M, and we let M4 be as above. Denoting by
Q5 the volume form of M, we have by definition the relation

) 2= | a,

Mg

To state the formula for #"(s), we separate our discussion into two cases.

Case 1: dim M = 2. In this case, each Mg is simply a finite C®-curve. Let K
denote the curvature function of the surface M. Then
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