A CHARACTERIZATION OF TWO-DIMENSIONAL RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

R. A. Holzsager and H. Wu

Let \overline{M} be a Riemannian manifold, and let M be a compact hypersurface, that is, a compact orientable submanifold of codimension 1 of \overline{M} , possibly with boundary. (Everything is assumed to be C^{∞} .) For sufficiently small s, let M_s denote the set of points lying on geodesics normal to M (and on a fixed side of M) at distance s from M. Denoting the volume of M_s by $\mathscr{A}(s)$, we call the real-valued function \mathscr{A} (defined in a neighborhood of zero) the growth function of M. In [1], it is shown that \mathscr{A} is a polynomial of degree at most 1, for each compact hypersurface in \overline{M} , if and only if \overline{M} is locally isometric to \mathbb{R}^2 . The purpose of the present note is to point out that the technique employed in [1] actually allows us to prove the following theorem, which is more general and more satisfactory.

THEOREM. A Riemannian manifold has the property that the growth function \mathcal{A} of each one of its compact hypersurfaces satisfies the linear differential equation

$$\mathscr{A}'' + c \mathscr{A} = 0$$

(where c is a fixed constant) if and only if it is a two-dimensional Riemannian manifold of constant curvature equal to c.

Using the known facts about the solutions of equation (1), we may rephrase the theorem in an equivalent way: the two-dimensional Riemannian manifolds of constant zero curvature are characterized by the fact that their growth functions are polynomials of degree at most 1; the two-dimensional Riemannian manifolds of constant positive curvature c are characterized by the fact that their growth functions are expressible as linear combinations of $\cos \sqrt{c} s$ and $\sin \sqrt{c} s$; and the two-dimensional Riemannian manifolds of constant negative curvature are characterized by the fact that their growth functions are expressible as linear combinations of $\cosh \sqrt{-c} s$ and $\sinh \sqrt{-c} s$.

Before giving the proof of the theorem, we must recall the results proved in [1]. We let M be a compact hypersurface of \overline{M} , and we let M_s be as above. Denoting by Ω_s the volume form of M, we have by definition the relation

(2)
$$\mathscr{A}(s) = \int_{M_s} \Omega_s.$$

To state the formula for $\mathcal{A}''(s)$, we separate our discussion into two cases.

Case 1: dim $\overline{M}=2$. In this case, each \underline{M}_s is simply a finite C^{∞} -curve. Let K denote the curvature function of the surface \overline{M} . Then

Received December 6, 1969.

This research was partially supported by the National Science Foundation.

Michigan Math. J. 17 (1970).