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1. INTRODUCTION

A proper map is one for which the inverse image of each compact set is com-
pact. Such a map is said to be acyclic over a coefficient domain L if each point-
inverse is cohomologically trivial over L. Unless we say otherwise, we assume that
L is an arbitrary but fixed principal ideal domain. We use the sheaf-theoretic co-
homology theory and the homology theory defined by A. Borel and J. C. Moore as ex-
plicated in [3]. All supports for these theories are closed unless “c” appears as a
subscript or superscript, in which case compact supports are to be taken. We re-
place “n-dimensional cohomology manifold” by the acronym “n-cm.”

K. W. Kwun and F. Raymond [4] have proved the following result. Suppose that
X is a compact, connected, orientable n-cm, and that Y is an n-cm. In addition,
suppose that

f: (X, A) — (Y, B) (A #X)

maps X - A onto Y - B and maps the closed set A onto B such that f| X - A is
acyclic. Then A satisfies a condition resembling Poincaré duality. More precisely,
for p # 0 and p # n, the homomorphism
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¢ H,_ (&) —> H,_(X) —> BP(X) —> HP(A)

is an isomorphism, where i, i*
duality isomorphism.

are induced by inclusion and A is the Poincaré

Theorem 1 of this paper provides a converse to the result of Kwun and Raymond
in the case where B is a point and A is a continuum. If one assumes that f is
proper and X is completely paracompact, the compactness of X may be discarded.
Under these hypotheses, the assumption that A satisfies the homological condition
above is sufficient to guarantee that Y is an orientable n-cm.

We apply Theorem 1 to give a generalized version of R. L.. Wilder’s monotone
mapping theorem [5].

In what follows, X will denote a connected, orientable n-cm, and y will denote
the fundamental class of X (y € Hi(X)). K A is a continuum in X, then c: X — X/A
is the canonical identification, and c(A) is represented by *. If S C X/A, then
c-1(S) = S*. A proper, compact, connected subset A of X is called a divisor of X
if the homomorphism
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