THE HOMOTOPY GROUPS OF BPL AND PL/O. III

G. Brumfiel

1. INTRODUCTION

Let Γ_{k-1} denote the group of oriented differentiable structures on the (k-1)-sphere. M. Kervaire and J. Milnor [8] have constructed an exact sequence

1.0
$$0 \rightarrow bP_k \rightarrow \Gamma_{k-1} \rightarrow \pi_{k-1}^s /im(J),$$

where $bP_k \subseteq \Gamma_{k-1}$ is the subgroup of exotic spheres that bound π -manifolds, π_{k-1}^s is the stable (k-1)-stem, and J is the classical J-homomorphism. Further, it is known that

$$bP_{k} = \begin{cases} \mathbb{Z}_{\theta_{k}} & \text{if } k \equiv 0 \pmod{4}, \\ \mathbb{Z}_{2} & \text{if } k \equiv 2 \pmod{4} \text{ and } k \neq 2^{j} - 2, \\ 0 & \text{if } k \equiv 1 \text{ or } k \equiv 3 \pmod{4}, \end{cases}$$

where θ_k is a large integer, and that $\Gamma_{k-1} \to \pi_{k-1}^s/\text{im}(J)$ is surjective if $k-1 \neq 2^j-2$ [8], [3].

In [5] and [6], we showed that the exact sequence 1.0 splits if $k \equiv 0$, 2, or 4 (mod 8). That is,

$$\Gamma_{4\mathrm{m-l}} \simeq \mathbb{Z}_{\theta_{4\mathrm{m}}} \oplus (\pi_{4\mathrm{m-l}}^{\mathrm{s}}/\mathrm{im}\,(\mathrm{J})) \quad \text{and} \quad \Gamma_{8\mathrm{m+l}} \simeq \mathbb{Z}_{2} \oplus (\pi_{8\mathrm{m+l}}^{\mathrm{s}}/\mathrm{im}\,(\mathrm{J})),$$

for all m. In this note, we outline a proof of the splitting of the sequence 1.0 for $k \equiv 2 \pmod{4}$ but $k \neq 2^j - 2$.

THEOREM 1.1. There exists an isomorphism

$$\Gamma_{4m+1} \simeq \mathbb{Z}_2 \oplus (\pi_{4m+1}^s/im(J))$$

if $4m + 2 \neq 2^{j} - 2$.

Theorem 1.1 includes the dimensions $k \equiv 2 \pmod{8}$ dealt with in [6]. The proof given here is perhaps more elementary.

In the dimensions 2^j -2, it is known that $bP_{2^j-2}=0$ if the element $(h_{j-1})^2$ survives to E_{∞} in the Adams spectral sequence [3]. If $bP_{2^j-2}=0$, there is no splitting problem in the exact sequence 1.0. M. Mahowald has shown that $(h_{j-1})^2$ does, in fact, survive to E_{∞} , if $j \leq 6$.

There exists an isomorphism $\Gamma_{k-1} \simeq \pi_{k-1}(PL/O)$ due to M. Hirsch and B. Mazur [7]. From the fibration $PL/O \to BO \to BPL$, it is clear that $\pi_k(BPL) \simeq \pi_{k-1}(PL/O)$ for $k \equiv 6 \pmod 8$, since $\pi_k(BO) = \pi_{k-1}(BO) = 0$. In [5] and

Received September 5, 1969.

Michigan Math. J. 17 (1970).