EXTREMAL LENGTH AS A CAPACITY

William P. Ziemer

1. INTRODUCTION

In Euclidean n-space E_n , the p-capacity $(1 \le p < \infty)$ of a pair of disjoint closed sets C_0 and C_1 is defined as

(1)
$$\Gamma_p(C_0, C_1) = \inf \left(\int_{E_n} |\operatorname{grad} u|^p dL_n \right),$$

where the infimum is taken over all continuous functions u on E_n that are infinitely differentiable on E_n - $(C_0 \cup C_1)$ and assume values 0 on C_0 and 1 on C_1 . Under the assumptions that C_0 contains the complement of some closed n-ball and that $1 , it was shown in [14] that <math display="inline">\Gamma_p(C_0,\,C_1)$ is equal to the reciprocal of the p-dimensional extremal length of all continua in E_n that intersect both C_0 and C_1 . This equality was first established by F. W. Gehring [10] in the case where p = n, and it plays an important role in the theory of quasiconformal mappings on E_n .

For an arbitrary set $E \subset E_n$, let $\psi_p(E)$ denote the reciprocal of the p-dimensional extremal length of all closed connected sets that join E to the point at infinity of E_n . By using the relationship between p-capacity and extremal length that was referred to above, we shall show that ψ_p is a capacity in the sense of Brelot.

Let W_p^1 denote the collection of distributions whose partial derivatives are functions locally in \mathscr{L}^p , and call a function u p-precise if $u \in W_p^1$ and if for every $\varepsilon > 0$, there exists an open set u such that $\psi_p(u) < \varepsilon$ and u restricted to the complement of u is continuous. For u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u Deny and u is equivalent to a precise function, thus extending the result obtained by u is equivalent to a precise function, thus extending the result obtained by u is equivalent to a precise function, thus extending the result obtained by u is equivalent to a precise function, thus extending the result obtained by u is equivalent to a precise function, thus extending the result obtained by u is equivalent to a precise function, thus extending the result obtained by u is equivalent to a precise function, thus extending the result obtained by u is equivalent to a precise function, thus extending the result of u is equivalent to a precise function, thus extending the result of u is equivalent to a precise function, thus extending the result of u is equivalent to a precise function u is equivalent to u in the case u is equivalent to u in the ca

$$\psi_{p}(A) = \inf \left(\int_{E_{p}} |grad u|^{p} \right),$$

where the infimum is taken over all precise functions u that "vanish at infinity" and for which u(x) = 1 for ψ_p -almost all $x \in A$.

2. NOTATION AND PRELIMINARIES

By L_n and H^k , we denote n-dimensional Lebesgue measure and k-dimensional Hausdorff measure in E_n (for properties of the latter, see [6]). Let \mathscr{L}^p be the

Received July 7, 1969.

This research was supported in part by NSF grants GP7505 and GP11603.

Michigan Math. J. 17 (1970).