A CHARACTERIZATION OF UNIFORMLY CONTINUOUS UNITARY REPRESENTATIONS OF CONNECTED LOCALLY COMPACT GROUPS

Robert R. Kallman

In this paper, we characterize the uniformly continuous unitary representations of connected, locally compact groups. Roughly stated, the main theorem says that a unitary representation of a connected, locally compact group is uniformly continuous if and only if its support (see J. Dixmier [1, Definition 18.1.7, p. 315]) is a nice bounded set.

In what follows, G denotes a connected, locally compact group whose topology satisfies the second axiom of countability. Let $H=\bigcap_{\pi} \operatorname{Ker} \pi$, where π ranges over the set of finite-dimensional unitary representations of G. Then H is a closed, normal subgroup of G. Hence, G/H is also a connected, locally compact group whose topology satisfies the second axiom of countability.

The notation used in this paper is that of Dixmier [1]. Specific notation and results from [1] will be recalled as the need arises. To avoid needless circumlocution, we abbreviate "strongly continuous unitary representation" to "unitary representation."

The main result is that $\pi(\cdot)$ is a uniformly continuous unitary representation of G if and only if $\pi(\cdot)$ is quasi-equivalent to a direct integral

$$\sum_{\ell=1}^{n} \bigoplus \int_{\widehat{\mathbf{G}}_{\ell}} \pi(\xi)(\cdot) d\mu_{\ell}(\xi),$$

where n is a positive integer depending on π , and where μ_{ℓ} is a Borel measure on \hat{G}_{ℓ} ($1 \leq \ell \leq n$) with compact support. In the process of proving this, we characterize the compact subsets of \hat{G}_m (m a positive integer). Each compact subset of \hat{G}_m is the union of finitely many sets of the form ($\hat{\pi}$, C). Here $\hat{\pi} \in \hat{G}_n$, C is a compact subset of \hat{G}_1 (the set of characters of G), and

$$(\hat{\pi}, C) = [\hat{\pi}_X \mid \chi \in C].$$

We first prove the theorem for the connected group G/H, making essential use of the fact that G/H is the direct product of a compact group and a vector group. Then we show that $(\widehat{G/H})_n$ and \widehat{G}_n are homeomorphic in a natural manner. The main result then follows from this.

LEMMA 1. G/H is the direct product of a connected compact group and a vector group.

Proof. By construction, G/H has a separating collection of finite-dimensional unitary representations. The theorem now follows from a result of R. V. Kadison and I. M. Singer [2, Theorem 1, p. 420]. ■

Received July 2, 1968.

The author is an NSF fellow.