SUBDIRECT DECOMPOSITIONS OF EXTENSION RINGS

Robert L. Snider

Let A and S be two rings. We say that E is an *extension of* A by S if A is an ideal of E and E/A is isomorphic to S. The purpose of this note is to give a simple counterexample to a theorem of C. W. Kohls [1], and to prove a similar result. The result is strong enough to obtain several of the corollaries in [1].

The result of Kohls [1, p. 401] states that if A is isomorphic to a subdirect sum of simple primitive rings $\{A_{\alpha}\}$ and if S is isomorphic to a subdirect sum of primitive rings $\{B_{\beta}\}$, then every extension E of A by S is isomorphic to a subdirect sum of the rings $\{A_{\alpha}\} \cup \{B_{\beta}\}$. The counterexample is as follows: Let E be the ring of all linear transformations of a vector space of countably infinite dimension into itself. Let A be the ideal consisting of all elements of E of finite rank. It is well known that the only ideals of E are the zero ideal A and E. Also A is a simple primitive ring. E/A is a simple ring with unity, and hence it is primitive. The result of Kohls would imply that E is isomorphic to a subdirect sum of A and E/A. This is clearly impossible, since E is subdirectly irreducible.

We recall that a ring is *semiprime* if it contains no nonzero nilpotent ideals.

THEOREM. If A is isomorphic to a subdirect sum of semiprime rings with unity $\{A_{\alpha}\}$, and if S is isomorphic to a subdirect sum of rings $\{B_{\beta}\}$, then each extension E of A by S is isomorphic to a subdirect sum of the rings $\{A_{\alpha}\} \cup \{B_{\beta}\}$.

Proof. For each α and each β , let

$$\mathbf{M}_{\alpha} \ = \ \left\{ \mathbf{a} \ \in \ A \text{: } \mathbf{a}_{\alpha} \ = \ 0 \right\} \qquad \text{and} \qquad \mathbf{P}_{\beta} \ = \ \left\{ \mathbf{s} \ \in \ S \text{: } \mathbf{s}_{\beta} \ = \ 0 \right\} \text{,}$$

where a_{α} and s_{β} denote components in the given subdirect sums. Then $\bigcap_{\alpha} M_{\alpha} = 0$ and $\bigcap_{\beta} P_{\beta} = 0$. Also, A/M_{α} is isomorphic to A_{α} and S/P_{β} is isomorphic to B_{β} . Now there exist ideals P'_{β} of E containing A such that $P_{\beta} = P'_{\beta}/A$ and $\bigcap_{\beta} P'_{\beta} = A$. Let $M'_{\alpha} = \{x \in E: Ax \subseteq M_{\alpha}\}$. M'_{α} is clearly an ideal of E. Let b be in $A \cap M'_{\alpha}$. Then $Ab \subseteq M_{\alpha}$, which implies $A \langle b \rangle \subseteq M_{\alpha}$, where $\langle b \rangle$ denotes the right ideal of A generated by b. Therefore, $\langle b \rangle^2 \subseteq M_{\alpha}$. Now M_{α} is a semi-prime ideal of A; therefore, $\langle b \rangle \subseteq M_{\alpha}$. Hence b is in M_{α} . Clearly, $M_{\alpha} \subseteq A \cap M'_{\alpha}$. Hence $M_{\alpha} = A \cap M'_{\alpha}$. Let $a + M_{\alpha}$ be the identity of A/M_{α} . If x is in E and y is in A, then

$$y(x - ax) = yx - yax \equiv yx - yx \pmod{M_{\alpha}}$$

since y is in A. Since the last quantity is zero, y(x - ax) is in M_{α} . Hence, x - ax is in M_{α} for all x in E.

This implies that $E = M'_{\alpha} + A$; for if x is in E, then x = (x - ax) + ax. Therefore,

$$E/M'_{\alpha} = (M'_{\alpha} + A)/M'_{\alpha} \cong A/(M'_{\alpha} \cap A) = A/M_{\alpha} \cong A_{\alpha}$$
.

Received May 16, 1969.

This work was done while the author was on an NSF Graduate Fellowship.