THE COMPACTNESS OF THE SET OF ARC CLUSTER SETS

Charles Belna and Peter Lappan

Let f be a continuous, complex-valued function defined in the unit disk D, let C be the unit circle, and let W be the Riemann sphere. For each point $p \in C$, let $\mathfrak{T}(p)$ be the set of all Jordan arcs contained in $D \cup \{p\}$ and having one endpoint at p. For each $t \in \mathfrak{T}(p)$, define the *cluster set of* f at p relative to the arc t by

$$C_{t}(f, p) = \bigcap_{r>0} \overline{f(t \cap \{z: |z-p| < r\})}.$$

By a continuum we shall mean a closed, connected, nonempty subset of W. We remark that under our definition, a set with exactly one element is a continuum, and that for each continuous function f and each $t \in \mathfrak{T}(p)$, the cluster set $C_t(f, p)$ is a continuum.

If A and B are two nonempty closed subsets of W, define

$$M(A, B) = \max(\sup_{a \in A} d(a, B), \sup_{b \in B} d(A, b)),$$

where $d(w_1, w_2)$ is the chordal distance between w_1 and w_2 . The distance M(A, B) is a metric on the set of all nonempty closed subsets of W. If we define

$$\mathfrak{C}_{\mathbf{f}}(\mathbf{p}) = \left\{ C_{\mathbf{t}}(\mathbf{f}, \mathbf{p}) : \mathbf{t} \in \mathfrak{T}(\mathbf{p}) \right\},$$

that is, if $\mathfrak{C}_f(p)$ is the set whose elements are the sets $C_t(f,\,p)$, then the metric M topologizes the set $\mathfrak{C}_f(p)$ with what we shall call the M-topology. The purpose of this paper is to investigate conditions under which $\mathfrak{C}_f(p)$ is compact in the M-topology.

By an ambiguous point p for the function f we mean a point $p \in C$ for which there exist two arcs t_1 and t_2 in $\mathfrak{T}(p)$ such that $C_{t_1}(f, p) \cap C_{t_2}(f, p) = \emptyset$. Our main result is the following theorem.

THEOREM 1. Let f be a continuous function in D, and let p be a point of C. If p is not an ambiguous point for f, then $\mathfrak{C}_f(p)$ is a compact set in the M-topology.

Proof. Suppose $\mathfrak{C}_f(p)$ is not a compact set in the M-topology. Then there exist a sequence of continua $\{K_n\}$ and a continuum K such that $K_n \in \mathfrak{C}_f(p)$ for each positive integer n, and such that $K \notin \mathfrak{C}_f(p)$ and $M(K_n, K) \to 0$. For each positive integer n, let

$$H_n = \{z \in D: d(f(z), K_n) < 1/n \text{ and } |z - p| < 1/n \}.$$

Since $K_n \in \mathfrak{C}_f(p)$, there exist a component G_n of H_n and an arc $t_n \in \mathfrak{T}(p)$ such that $C_{t_n}(f,\,p) = K_n$ and $t_n \subseteq G_n \cup \left\{p\right\}$.

Received December 7, 1968.

Peter Lappan acknowledges support from the National Science Foundation under grant No. GP8183.