PRODUCTS OF SELF-ADJOINT OPERATORS

Heydar Radjavi and James P. Williams

Introduction. The purpose of this paper is to present some partial results concerning the problem of characterizing the bounded linear operators T on a Hilbert space H that admit a factorization as a product of two self-adjoint operators. We conjecture that an invertible operator T has this property if and only if T is similar to its adjoint. The main results are (a) a proof of the conjecture under the restriction that dim $H < \infty$, and (b) a characterization of the operators that are unitarily equivalent to their adjoints. We also establish other sufficient conditions under which the conjecture is true.

1. We begin by considering the finite-dimensional case. Theorem 1 gives a reasonably good characterization of the product of two self-adjoint operators.

THEOREM 1. If H is a finite-dimensional Hilbert space, then the following are equivalent conditions for an operator T on H.

- (1) T is a product of two self-adjoint operators.
- (2) T is a product of two self-adjoint operators, one of which is invertible.
- (3) There exists an invertible self-adjoint operator A such that TA is self-adjoint.
 - (4) There exists an invertible self-adjoint operator A such that $A^{-1}TA = T^*$.
 - (5) There exists a basis of H with respect to which the matrix of T is real.
 - (6) T is similar to T*.

Proof. Carlson [1] proved the equivalence of the first five conditions. For the sake of completeness, we include here a substantial simplification of his arguments.

The implications $(2) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$ are clear, and therefore it suffices to prove $(1) \Rightarrow (2)$ and the chain $(5) \Rightarrow (6) \Rightarrow (5) \Rightarrow (5)$.

- (5) \Rightarrow (6). Suppose that T has real matrix (a_{ij}) relative to the basis $\{e_i\}$. Choose an orthonormal basis $\{f_i\}$, and define an invertible operator S so that $Sf_i = e_i$. Then $S^{-1}TS$ has matrix (a_{ij}) relative to the orthonormal basis $\{f_i\}$. Since any matrix is similar to its transpose, it follows that $S^{-1}TS$ is similar to $(S^{-1}TS)^t = (S^{-1}TS)^*$. This implies that T is similar to T^* .
- (6) \Rightarrow (2). Assume that TS = ST* for some invertible operator S. Taking adjoints, one sees easily that

$$T(e^{i\theta} S + e^{-i\theta} S^*) = (e^{i\theta} S + e^{-i\theta} S^*)T^*$$

for each real θ . Now the operator

$$A_{\theta} = e^{i\theta} S + e^{-i\theta} S^* = (SS^{*-1} + e^{-2i\theta}) e^{i\theta} S^*$$

Received May 16, 1968.