A STABILITY THEOREM FOR FRAMES IN HILBERT SPACE

Lawrence J. Wallen

The point of departure for this note is the well-known theorem [1, p. 4] stating that if $\{x_i\}_1^\infty$ and $\{y_i\}_1^\infty$ are frames (that is, orthonormal sequences) in a Hilbert space H and if $\sum \|x_i - y_i\|^2 < \infty$, then the completeness of $\{x_i\}$ implies that of $\{y_i\}$ (for a generalization, see [2]). We may regard this theorem as a global extension of the trivial local stability theorem in which the symbol ∞ in the inequality is replaced with 1. In this note, we prove that any class of frames, stable under a small perturbation of a certain type, is automatically stable under a more radical perturbation.

1. SOME DEFINITIONS AND THE THEOREM

H will be a complex Hilbert space of arbitrary dimension, and A will be a fixed set such that $card(A) \le dim(H)$. An A-frame is an H-valued function on A whose image is an orthonormal set of H.

Let R^+ be the nonnegative real numbers. Let ϕ be a function defined on $\prod_A R^+$ into $R^+ \cup \{\infty\}$ such that

- (1) if $\xi_a \leq K\eta_a$ for all $a \in A$ and if $\phi\{\eta_a\} < \infty$, then $\phi\{\xi_a\} < \infty$,
- (2) if for each a ϵ A, f_a is a continuous function from a topological space X into R^+ , if $f_a(x) \leq \xi_a$ for all a ϵ A and x ϵ X, and if $\phi\{\xi_a\} < \infty$, then $\phi\{f_a\}$ is continuous.

THEOREM. Let C be a class of A-frames. Suppose there exists a $\delta>0$ such that if $\{x_a\}\in C$ and $\{y_a\}$ is an A-frame with $\phi\{\|x_a-y_a\|\}<\delta$, then $\{y_a\}\in C$. Suppose further that $\{x_a\}\in C$ and that $\{z_a\}$ is an A-frame with $\phi\{\|z_a-x_a\|\}<\infty$. Then $\{z_a\}\in C$.

Assumption (2), which is a generalized M-test, assures us that the perturbations defined by ϕ are small. We can obtain the prototypical theorem mentioned in the introductory paragraph by taking A to be the positive integers, $\phi\{\xi_j\} = \sum \xi_j^2$, $\delta = 1$, and C the class of complete frames. The theorem is an almost immediate consequence of the following lemma.

LEMMA. Let $\{x_a\}$ and $\{y_a\}$ be A-frames. Then for each t with $0 \le t \le 1$, there exists an A-frame $\{x_a(t)\}$ satisfying the conditions

- (i) $x_a(0) = x_a$, $x_a(1) = y_a$,
- (ii) $x_a(t)$ is a strongly continuous function of t,
- (iii) $||x_a(t) x_a|| \le 2||y_a x_a||$ for all $a \in A$.

Received January 19, 1968.