GROUPS OF ORDER AUTOMORPHISMS OF CERTAIN HOMOGENEOUS ORDERED SETS

David Eisenbud

1. INTRODUCTION

Call a chain (linearly ordered set) *short* if it contains a countable unbounded subset, and *homogeneous* if all convex subsets without greatest or least elements are isomorphic. The purpose of this paper is to investigate the algebraic structure of the group $S(\Omega)$ of order automorphisms of a short homogeneous chain (abbreviated SHC) Ω .

In Section 2 we show that the group structure of $S(\Omega)$ determines, up to duality, the structure of $\overline{\Omega}$ (the conditional completion of Ω) and the lattice structure of $S(\Omega)$. We give a partial solution to the problem of finding all SHC's Ω with the same group $S(\Omega)$. Our solution includes the result $S(\mathcal{R}) \not\equiv S(\mathcal{Q})$.

In Section 3 we calculate the automorphism groups of large subgroups of $S(\Omega)$. Our result includes the theorem of J. T. Lloyd [5] that if Ω is conditionally complete, then every automorphism of $S(\Omega)$ comes from conjugation by an order automorphism or antiautomorphism of Ω .

The author is grateful to Otto H. Kegel and Peter M. Neumann for many enlightening discussions concerning this material.

Some notation: S^{Ω} is the full group of permutations of Ω ; $L(\Omega)$ (respectively, $R(\Omega)$) is the subgroup of elements of $S(\Omega)$ whose support is bounded on the right (on the left); and $N(\Omega) = R(\Omega) \cap L(\Omega)$. For unexplained terminology, see [7] and [1].

We note that not every SHC is a subset of \mathcal{R} (the set of real numbers). See, for example, [6].

2. GROUP STRUCTURE AND ORDER

The following is the fundamental tool of this paper.

THEOREM 1. If Ω is short, and all of its open intervals are isomorphic, then $L(\Omega)$, $R(\Omega)$, and $N(\Omega)$ are the only proper normal subgroups of $S(\Omega)$; also, $N(\Omega)$ is the only proper normal subgroup of $L(\Omega)$ or $R(\Omega)$, and $N(\Omega)$ is algebraically simple.

The difficult part of this, the simplicity of $N(\Omega)$, is due to G. Higman [2] (see also [7, p. 25]). The rest of Theorem 1 is a consequence of [3, Theorem 6]. A proof also appears in [5].

Note that if Ω is isomorphic to its order dual Ω^* , then $L(\Omega) \cong R(\Omega)$ and all four of the simple factors $S(\Omega)/L(\Omega)$, $S(\Omega)/R(\Omega)$, $R(\Omega)/N(\Omega)$, and $L(\Omega)/N(\Omega)$ are isomorphic. To complete the picture, we state without proof the following theorem.

THEOREM 2. Under the hypothesis of Theorem 1, $N(\Omega) \not\equiv R(\Omega)/N(\Omega)$.

It is not to be hoped, even if Ω is an SHC, that the algebraic structure of $S(\Omega)$ will determine Ω ; for example, if Γ is the set of irrational numbers and $\mathscr Q$ is the

Received May 27, 1968.