EXTREMAL LENGTH AND p-CAPACITY

William P. Ziemer

1. INTRODUCTION

In Euclidean n-space E_n , consider two disjoint closed sets C_0 and C_1 , where C_0 is assumed to contain the closure of the complement of some closed n-ball B. We follow [12] in defining the p-capacity $(1 \le p < \infty)$ of the pair (C_0, C_1) as

(1)
$$\Gamma_{p}(C_{0}, C_{1}) = \inf \left\{ \int_{E^{n}} |\operatorname{grad} u|^{p} dL_{n} \right\},$$

where the infimum is taken over all continuous functions u on E_n that are infinitely differentiable on $\,E_{n}$ - (C $_{0}\cup$ C $_{1})\,$ and assume boundary values 0 on C $_{0}$ and 1 on C₁. Serrin found this notion useful in connection with the question of removable singularities of solutions to certain partial differential equations. The case of conformal capacity is represented when p = n, and it has been fundamental in the development of a theory of quasiconformal mappings in E_n (see [7]). The importance of conformal capacity in the theory of quasiconformal mappings is partly due to an equality of Gehring [6] that relates conformal capacity to the reciprocal of the ndimensional extremal length of all continua in E_n that intersect both C_0 and C_1 . Gehring's proof is valid for a similar equality that involves p-capacity and p-dimensional extremal length, provided p>n - 1. It is the purpose of this paper to provide a proof for $p \ge 1$, thus answering in the affirmative question 16 of [13]. We note that the proof is elementary in the sense that it demands only a few basic facts of real function theory. Together with [4, Theorem 7], the result yields a new proof of a theorem of Wallin [14], which relates p-capacity to potential-theoretic capacity. On the other hand, our result, along with that of Wallin, establishes Fuglede's theorem for compact sets, in case k = 1.

The author wishes to thank William Gustin for a number of helpful discussions that led to improvements of some of the theorems.

2. NOTATION AND PRELIMINARIES

 L_n and H^k will denote n-dimensional Lebesgue measure and k-dimensional Hausdorff measure in E_n (for properties of the latter, see [2]). If A is an L_n -measurable subset of E_n , let $\mathscr{L}^p(A)$ be the class of functions f for which $|f|^p$ is integrable, and let $||f||_p$ be the \mathscr{L}^p -norm.

2.1. A real-valued function u defined on an open subset G of E_n is called absolutely continuous in the sense of Tonelli on G (ACT) if it is ACT on every interval $I \subset G$ [11, p. 169]. The gradient of u (which will now be denoted by ∇u) exists L_n -almost everywhere on G; moreover, it can easily be shown that the infimum appearing in the definition (1) of p-capacity is not diminished if we extend it to the class of ACT functions that assume the specified boundary values (see [5]).

Received May 17, 1968.

This work was supported in part by a grant from the National Science Foundation.