## A COEFFICIENT PROBLEM FOR A CLASS OF UNIVALENT FUNCTIONS

## T. J. Suffridge

## 1. INTRODUCTION

Let  $E_r = \{z: |z| < r\}$ , let  $E_1 = E$ , and let

$$S_r = \{f: f \in S \text{ and } f(E) \supset E_r \},$$

where S denotes the collection of functions  $f(z) = z + a_2 z^2 + \cdots$  that are regular and univalent in E. Let  $S_r^*$  consist of the functions  $f \in S_r$  for which f(E) is starlike, and write  $S_{1/4}^* = S^*$ . Consider the following extremal problems.

Problem 1. Find max  $|a_2|$  for  $f(z) = z + a_2 z^2 + \cdots \in S_r$ .

Problem 2. Find max  $|a_2|$  for  $f(z) = z + a_2 z^2 + \cdots \in S_r^*$ .

It is clear that for  $r \le 1/4$  the Koebe function solves both problems, and that for r = 1 the function f(z) = z solves both problems.

In this paper we solve Problem 2, and we make a conjecture concerning Problem 1. We also conjecture that for the class  $\sigma$  of biunivalent functions (see [4]), the coefficient  $a_2$  satisfies the sharp inequality  $|a_2| \le 4/3$ . We give an example of a function  $f \in \sigma$  for which  $|a_2| = 4/3$ .

For 1/4 < r < 1, an extremal domain for Problem 2 consists of the entire complex plane minus a set  $\{z: |z| \ge r, \pi - \psi \le \arg z \le \pi + \psi\}$   $(0 < \psi < \pi)$ . To be more specific, if we choose  $\phi$  so that

(1) 
$$r = [(1 + \cos \phi)^{1 + \cos \phi} (1 - \cos \phi)^{1 - \cos \phi}]^{-1} (0 < \phi < \pi/2),$$

then  $|a_2| = 2 \cos^2 \phi$  for the extremal function  $f(z) = z + a_2 z^2 + \cdots$ ; and if we take  $a_2 > 0$ , the extremal domain is as described above, with  $\psi = \pi(1 - \cos \phi)$ .

It is interesting to note the relation between this solution and the solution to another extremal problem. Let M>1, and consider the functions  $g(z)=z+b_2\,z^2+\cdots$  in S with  $\big|g(z)\big|< M$  ( $z\in E$ ). The function  $g\in S$  determined by the differential equation

$$\frac{z g'(z)}{g(z)} = G(z) = \left(1 + \frac{4\left(1 - \frac{1}{M}\right)z}{(1 - z)^2}\right)^{-1/2}$$
 (G(0) = 1)

maximizes  $|b_2|$  in this class of functions [5, p. 244, Exercise 4]. If we take  $\cos^2\phi = 1 - \frac{1}{M}$  and r has the value in (1), then the function  $f \in S$  satisfying the equation

Received October 25, 1967.