A NONLINEAR PROBLEM IN POTENTIAL THEORY

Lamberto Cesari

1. In this paper we study the following nonlinear boundary-value problem in the unit disc:

(1)
$$\begin{cases} \Delta u + g(x, y, u) = 0 & ((x, y) \in A = [x^2 + y^2 < 1]), \\ u = 0 & ((x, y) \in \partial A = [x^2 + y^2 = 1]), \end{cases}$$

where g is a measurable function of x, y, u satisfying, for some given constants $R_1 > 0$, $R_2 \ge 0$, $L \ge 0$, the inequalities

$$|g(x, y, u)| \le R_2$$
 for almost all $(x, y) \in A$ and for $|u| \le R_1$,

(2)
$$|g(x, y, u_1) - g(x, y, u_2)| \le L |u_1 - u_2|$$
 for almost all $(x, y) \in A$ and for $|u_1|, |u_2| \le R_1$.

We prove that if g satisfies certain additional inequalities limiting its values and its growth with respect to u, then problem (1) has at least one solution u(x, y) ($(x, y) \in A$) such that

- (i) u(x, y) is continuous in $A \cup \partial A$ and is zero on ∂A ,
- (ii) u(x, y) has first-order partial derivatives that are continuous in A,
- (iii) Δu , in the sense of the theory of distributions, is a measurable essentially bounded function,
 - (iv) Δu satisfies (1) a.e. in A.

If g is also sufficiently smooth in (x, y), then u has continuous second-order partial derivatives and (1) holds everywhere in A in the strict sense. The conditions concerning the growth of g are not unreasonably strict. For instance, for the problem

$$\Delta u + f(x, y) |u| = h(x, y)$$
 $((x, y) \in A),$
 $u = 0$ $((x, y) \in \partial A),$

all that we require of the measurable functions f and h is that they are bounded and that |f(x, y)| < 4.13 in A. The example shows that the present requirement concerning the growth of g is far removed from the usually very strict requirements that are necessary in the use of perturbation techniques.

For the above problem in nonlinear partial differential equations, we apply here a process that we discussed in some generality in [2] and [4] and that has been studied, applied, and extended in a number of ways (see [1], [3], [5], [6], [8], [10],

Received October 29, 1968.

This research was partially supported by US-AFOSR Research Project 942-65 at the University of Michigan.