LIGHT OPEN MAPPINGS ON A TORUS WITH A DISK REMOVED

Morris L. Marx

1. INTRODUCTION

Suppose δ is a continuous mapping of a Jordan curve J into Euclidean 2-space R^2 . We shall consider J as the boundary of T, a 2-dimensional torus with a disk removed, and also as the boundary of a 2-cell D, and we shall study the relation between the case where δ has a light, open, continuous extension to T and the case where δ has a similar extension to D.

Generally, definitions and notation not given in the paper will be as in [3]. All light open mappings will be assumed to be sense-preserving, unless it is otherwise specified.

2. MAIN RESULTS

Definition 1. Suppose J is a Jordan curve on a 2-dimensional torus that bounds a disk; let T be the other component of the complement of J. Suppose δ is a continuous mapping of J into R^2 . We say that δ is a t-boundary if there exists a properly interior mapping $f: \overline{T} \to R^2$ such that $f \mid J = \delta$. (We use the term properly interior in the sense of [7], not [3].)

We shall consider J as embedded in \mathbb{R}^2 and oriented as in Figure 1.

Definition 2. Suppose I = [a, b] is a closed interval of real numbers, A is some closed arc, and δ : $A \to R^2$. We extend the definition of normality as in [6, p. 1084] and say that δ is topologically normal (briefly, t-normal) if there exist homeomorphisms h: $I \to A$ and k: $R^2 \to R^2$ such that $k \circ \delta \circ h$ is normal in the sense of [6]. Also, if M is an oriented Jordan curve and δ maps M into R^2 , then δ is t-normal if there exists a mapping ψ : $I \to M$ such that $\psi(a) = \psi(b)$, ψ is one-to-one on (a, b), $\psi(x) \neq \psi(a)$ for $x \in (a, b)$, and $\delta \circ \psi$ is

Figure 1.

t-normal as defined in the previous sentence. Let δ map the closed arc A_1 into R^2 ; let η map the closed arc A_2 into R^2 . We say that δ and η intersect t-normally if there exist homeomorphisms $h_1\colon I\to A_1$, $h_2\colon I\to A_2$, and $k\colon R^2\to R^2$ such that $k\circ\delta\circ h_1$ and $k\circ\eta\circ h_2$ intersect normally in the sense of [3, p. 50].

LEMMA 1. Let U be an open connected subset of a metrizable 2-dimensional manifold, and suppose $f: U \to R^2$ is light and open. For any two points p and q in U, there exists an arc A in U with end points p and q such that $f \mid A$ is t-normal. Also, if A_1 is any arc and $g: A_1 \to R^2$ is t-normal, then A can be chosen so that $f \mid A$ and $g \mid A_1$ intersect t-normally. Finally, if U is bounded by a finite number of Jordan curves and f is a local homeomorphism at points of \overline{U} - U, then the

Received October 5, 1967.