ON THE MAXIMUM DEGREE IN A RANDOM TREE

J. W. Moon

1. INTRODUCTION

A tree is a connected graph that has no cycles (see, for example, Ore [7] as a general reference on graph theory). The degree of a node x in a tree is the number d(x) of edges joining x to other nodes. Since any tree T_n with n labelled nodes has exactly n-1 edges, it follows that the average value of d(x), as x runs over the nodes of T_n , is 2(1-1/n). Let $D=D(T_n)$ denote the maximum degree of nodes in the tree T_n , that is, let $D(T_n)=\max \left\{d(x): x \in T_n\right\}$. Our object here is to derive, by elementary and crude arguments, an asymptotic formula for the average value of $D(T_n)$ over the set of the n^{n-2} trees T_n with n labelled points.

2. PRELIMINARY RESULTS

We first list some results that we shall use later. (In what follows, n and k will always denote integers such that $1 \le k \le n-1$.)

LEMMA 1. If the integers d(i) ($i=1, 2, \cdots, n$) form a decomposition of 2(n-1), then there exist

$$\binom{n-2}{d(1)-1, \cdots, d(n)-1}$$

trees T_n with n labelled nodes, the $i^{\mbox{th}}$ node having degree d(i).

This has been proved by Moon [5], [6] and Riordan [8].

LEMMA 2. There are $\binom{n-2}{k-1}$ $(n-1)^{n-k-1}$ trees T_n with n labelled nodes in which d(x) = k for each node x.

This was first proved by Clarke [1]; it follows easily from Lemma 1.

LEMMA 3. If $k = \left[\frac{(1+\epsilon)\log n}{\log \log n}\right]$, then $\frac{n}{k!} < n^{-\epsilon+o(1)}$ as $n \to \infty$, for any positive constant ϵ .

LEMMA 4. If $k = \left[\frac{(1-\epsilon)\log n}{\log\log n}\right]$, then $\frac{n}{k!} > n^{\epsilon+o(1)}$ as $n \to \infty$, for any positive constant ϵ .

LEMMA 5. If $k=[\log\,n],$ then $\,\frac{n}{k\,!} < n^2\log\,n/n^{\log\log n}$ for all sufficiently large values of n.

Received July 15, 1968.

This paper was completed during the Summer Research Institute of the Canadian Mathematical Congress at Queen's University.