ON THE COEFFICIENTS OF FUNCTIONS WITH BOUNDED BOUNDARY ROTATION

W. E. Kirwan

1. INTRODUCTION

In this note, we discuss the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic in the unit disc U, satisfy the condition $f'(z)\neq 0$ in U, and map U onto a domain with bounded boundary rotation (for a definition of this concept, see [3]). In particular, we denote by V_k the family of functions that satisfy the above conditions and map U onto a domain with boundary rotation at most $k\pi$. V. Paatero [3] showed that $f\in V_k$ if and only if

(1.1)
$$f(z) = \int_0^z \exp \left\{ \int_0^{2\pi} \log (1 - ze^{-it})^{-1} d\mu(t) \right\} dz,$$

where $\mu(t)$ is real-valued and of bounded variation on $[0, 2\pi]$ and satisfies the conditions

i)
$$\int_0^{2\pi} d\mu(t) = 2$$
, ii) $\int_0^{2\pi} |d\mu(t)| \le k$.

 V_2 is precisely the class of normalized univalent functions that map U onto a convex domain, and it is known [3] that for $2 \leq k \leq 4$, V_k consists only of univalent functions.

In spite of considerable effort, the problem of determining

(1.2)
$$A_{n}(k) = \max_{f \in V_{k}} |a_{n}|$$

remains unsolved, except for k = 2 and k = 4.

K. Loewner [2] proved that $A_n(2) = 1$, and A. Rényi [5] proved that $A_n(4) = n$. Rényi's result shows that

(1.3)
$$A_n(k) \leq n \quad (k \leq 4);$$

in addition Rényi proved that

$$A_n(k) \leq n^{k-2},$$

Received December 23, 1967.

Work on this paper was supported by a grant from the National Science Foundation, NSF GP-6891.