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This paper is concerned with the construction of monotonic functions that are
singular (that is, have derivative zero almost everywhere) and possess good con-
tinuity properties as measured by the modulus of smoothness. We consider the
operator Aj: f(x) — f(x + h) - £(x), and we recall that the modulus of continuity of f
is the function

w(t) = sup sup IAhf(x)I;
x 0<h<t

more generally, the (rth-order) modulus of smoothness w,.(t) is defined when Ay is
replaced by the rth-difference operator Af . We shall refer to w, simply as the
modulus of smoothness.

Clearly, w(t) = O(t) implies f is absolutely continuous. It is known that any
bound on w that does not imply f € Lip 1 is compatible with the existence of an in-
creasing singular function whose modulus of continuity does not exceed w. This
seems implicit in a construction of F. Hausdorff (see {4, p. 30], also our paper [8]).
Added in proof. The result was proved by P. Hartman and R. Kershner, The siruc-
ture of monotone functions, Amer. J. Math. 59 (1937), 809-822 (see p. 818). We are
indebted to P, L. Duren for this reference.

On the other hand, it is remarkable that the (Zygmund) class Z of functions for
which wy(t) = O(t) contains increasing singular functions. This was first deduced in
[2] (it underlies a long-known counterexample in the theory of conformal mapping).
The first direct construction was given by G. Piranian [6]. Another construction, due
to J.-P. Kahane, is mentioned without detailed verification in [6]. Piranian also out-
lines a proof that there is a singular function with w,(t) = o(t). Our main result (see
Theorem 2) is the construction of an increasing singular function with
wy(t) = Ot Ilog t| -1/ 2), and this is essentially an unimprovable result (see the fol-
lowing paragraph). Our method is an adaptation of the basic idea (selective succes-
sive modifications) underlying Piranian’s construction. The main novelty in our con-
struction is the choice, as a “basic building block,” of a trigonometric polynomial
that vanishes very smoothly at the end points. Our choice has the two-fold advantage
over Piranian’s cubic polynomial that all of our successive approximations are twice
differentiable (this simplifies the estimation of w,(t)), and that for the proof of singu-
larity we are able to invoke a known theorem on the convergence of lacunary trigono-
metric series. This construction, together with the extension to higher-order moduli
of smoothness, is given in Section 1.

From the other side, M. Weiss and A. Zygmund [10] have shown that if
wa(t) = O(t |log t| ~©) for some ¢ > 1/2, then f is absolutely continuous and in fact
has a derivative of class LP for every p < «. Their proof is based on the theory of
trigonometric series. They showed that their theorem becomes false for c = 1/2, by
exhibiting a function f for which f' exists almost nowhere and

w,(t) = Ot |log t| "1/?).
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