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INTRODUCTION

Let K be a Chebyshev subset of a Banach space (X, ” " ). Then, by definition, K
is closed and for every x € X there exists a unique P(x) € K satisfying the condi-
tion

x - P = inf{|x-k|: ke K} = dist (x, K).

This map Pk from X to K is called the best approximation opevator (BAO) sup-
ported by K; its value Py(x) at x is the best approximation to x out of K. It is
easy to see that Py is always a closed projection, in the sense that Py(x) = x
whenever x € K, and, if x, — x and Py(x,) — y, then y = Pr(x). We are interested
in the following general question: assuming that K is convex, how does PK(x) vary
as a function of x?

For every closed convex subset of X to be a Chebyshev set, it is necessary and
sufficient that X be reflexive and strictly convex (the deep part of this result is due
to James; see the remarks in [18, Section 4}). We conjecture that these conditions
are also sufficient to guarantee that Pk is always continuous. However, Pk need
not be continuous whenever K is a linear Chebyshev subspace of an arbitrary Banach
space. This will be shown by Example 4, in which K is a subspace of codimension 2.
The weakest condition that is known (to the authors) to imply that Pk is continuous
is that K be approximatively compact, in other words, that every minimizing se-
quence in K be compact [5]. In particular, every closed convex subset of a uni-
formly convex space has this property [6].

Very smooth BAO’s are characteristic of Hilbert space. Indeed, a Banach space
X of dimension greater than 2 has each of the following three properties if and only
if it is a Hilbert space: (a) whenever K is a closed subspace of X, it is a Chebyshev
set and Py is a linear operator ( [8]; a stronger result has been established in [19] );
(b) whenever K is a closed convex subset of X, it is a Chebyshev set and Py satis-
fies the Lipschitz condition |Pi(x) - Pr()| < [|x - y|| [2], [17]; (c) whenever K is
a 1l-dimensional subspace of X, it is a Chebyshev set and Py is continuously
Gateaux differentiable (Theorem 3). (The case where dim X < 2 is special because
every Chevyshev subspace of codimension 1 supports a linear BAO (Theorem 3).)
Thus a major part of this paper will be devoted to kinds of smooth behavior of Py
that are intermediate between continuity and the uniform smoothness that character-
izes Hilbert space. There are two ways in which we can weaken the characteristic
properties of Hilbert space: by requiring a weaker property to hold for all closed
subspaces or convex sets, or by requiring a strong property to hold, but not uni-
formly.

An example of the first kind is the wuniform Lipschitz property of approximation.
A reflexive and strictly convex space X has property {UL) if there exists a constant
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