SOME n-DIMENSIONAL MANIFOLDS THAT HAVE THE SAME FUNDAMENTAL GROUP

R. H. Fox

The formula

$$x_1 \rightarrow x_1 \cos \theta + x_2 \sin \theta$$
,
 $x_2 \rightarrow -x_1 \sin \theta + x_2 \cos \theta$,
 $x_3 \rightarrow x_3$,
...
$$x_n \rightarrow x_n$$

defines a rotation of n-dimensional euclidean space S about the (n-2)-dimensional subspace $A = \{(x_1, \dots, x_n) | x_1 = x_2 = 0\}$, which we shall denote by spin_{θ} . It maps the (n-1)-dimensional half-space

$$H_{\theta} = \{(x_1, \dots, x_n) | x_1 = \rho \cos \theta, x_2 = \rho \sin \theta, \rho \ge 0\}$$

onto the (n-1)-dimensional half-space $H_0 = \{(x_1, \dots, x_n) | x_1 \ge 0, x_2 = 0\}$. The point at infinity is supposed to be included, so that S and A are spheres and each H_{θ} is a cell whose boundary ∂H_{θ} is A. An (n - 2)-dimensional sphere L in the finite part of S will be called a deform-spun sphere if L ∩ A is an (n - 4)-dimensional sphere and if for each θ the intersection of L and H $_{\theta}$ is an (n - 3)-dimensional cell bounded by $L \cap A$. The deformation referred to is the closed isotopical deformation $K_{\theta} = \mathrm{spin}_{\theta} \ L \cap H_{\theta} \ (0 \leq \theta \leq 2\pi)$ of K_0 in H_0 . (During this deformation, the boundary $\partial K_0 = L \cap A$ remains fixed.) The spun sphere defined by Artin [1] in 1925 is, of course, the deform-spun sphere whose deformation is the stationary deformation $K_{\theta} = K_0$. If the deformation K_{θ} is stationary outside some (n - 1)-dimensional cell C whose boundary ∂C intersects K_0 at diametrically opposite points p, q of ∂C and may be described topologically inside C as the rotation of C about its axis \overline{pq} through the angle $q\theta$, then the deform-spun sphere $L = L_q$ is called a q-twist-spun sphere. (The rotation of S is the spin, and the rotation of C is the twist.) In another paper [3], I have shown that there exist deform-spun spheres that are not twist-spun spheres.

The ν -fold cyclic covering of S branched over L_q is a closed orientable n-dimensional manifold $\Sigma = \Sigma_{\nu,q}(K_0)$. The part of Σ that lies over L is an (n-2)-dimensional sphere Λ .

THEOREM. The fundamental group $\pi(\Sigma_{\nu,q})$ of $\Sigma_{\nu,q}$ depends (for given K_0) only on the greatest common divisor d of ν and q. In particular, $\Sigma_{\nu,q}$ is simply connected whenever d=1.

Received September 13, 1967.