## STRUCTURE THEOREMS FOR REGULAR LOCAL NOETHER LATTICES

## Kenneth P. Bogart

## 1. INTRODUCTION

The concept of a Noether lattice was introduced by R. P. Dilworth [2] as an abstration of the concept of the lattice of ideals of a Noetherian ring. A Noether lattice is a modular multiplicative lattice satisfying the ascending chain condition in which every element is a join of elements called principal elements. The principal elements are characterized by a pair of identities that are satisfied by the principal ideals of a ring. A generalization of Krull's principal-ideal theorem for Noether lattices states that the rank of a minimal prime containing a principal element is at most 1.

A Noether lattice is local if it has a unique proper maximal element. The definitions of dimension and rank carry over directly from Noetherian rings to Noether lattices. A local Noether lattice of dimension n is regular if its maximal element is a join of n principal elements. The structure of arbitrary regular local Noether lattices is closely related to a special class  $\{RL_n\}$  of Noether lattices.

The elements of  $RL_n$  are those ideals of  $F[x_1, \cdots, x_n]$  which are joins of products of the ideals  $(x_1), (x_2), \cdots, (x_n)$ . We show that  $RL_n$  is a sublattice of the lattice of ideals of  $F[x_1, \cdots, x_n]$ , and that it is a regular local Noether lattice. Our main results describe the relationship between  $\{RL_n\}$  and arbitrary regular local Noether lattices as follows.

A local Noether lattice L of dimension n is regular if and only if there exists a sublattice L' of L with the property that prime, primary, and principal elements in L' are, respectively, prime, primary, and principal in L, and L' is isomorphic to  $RL_n$ .

A distributive regular local Noether lattice is isomorphic to one of the lattices  $\mathrm{RL}_{\mathrm{n}}$  .

In addition, we show that for  $n \geq 2$ ,  $RL_n$  is not isomorphic to the lattice of ideals of any ring. In fact, an appropriate quotient sublattice of  $RL_2$  provides an example of a Noether lattice for which the usual "converse" to Krull's principal-ideal theorem (a prime of rank 1 is a minimal prime of some principal ideal) does not hold.

## 2. PRELIMINARY DEFINITIONS AND RESULTS

The notation and terminology of this paper are the same as those of [2], with the exception that we use  $\vee$  and  $\wedge$  to denote the lattice operations, and  $\leq$  to denote the lattice partical ordering, with < reserved for proper inequality.

By a multiplicative lattice we mean a complete lattice L containing a unit element I and a null element 0, and provided with a commutative, associative, join-

Received September 11, 1967.