A PROOF OF A STATEMENT OF BANACH ABOUT THE WEAK* TOPOLOGY ## O. Carruth McGehee Let B be a Banach space, and let Γ be a linear manifold in the dual space B*. Let Γ^1 be the manifold consisting of all the points in B* that are weak* limits of sequences in Γ . By induction, for every ordinal number ξ we define Γ^{ξ} as follows (with $\Gamma^0 = \Gamma$): $$\Gamma^{\xi} = \left(\bigcup_{\sigma < \xi} \Gamma^{\sigma} \right)^{1}.$$ Then $\Gamma \subset \Gamma^1 \subset \Gamma^2 \subset \cdots$, and if ξ has a predecessor, then $\Gamma^{\xi} = (\Gamma^{\xi-1})^1$. If B is separable, there exists a first countable ordinal ξ_0 such that Γ^{ξ_0} is the weak* closure of Γ ; ξ_0 is called the *order of* Γ . Banach, in his discussion of this [1, pp. 208-213], proves that for every positive integer n there exists a linear manifold in ℓ^1 of order n. He then states, but does not prove, that there exist linear manifolds in ℓ^1 of arbitrarily high countable orders. He refers to a paper at this point, but the paper never appeared. The corresponding statement for the space H^{∞} has been proved by Sarason [6], [7]. In this paper we shall prove the following. THEOREM. If ξ is a countable ordinal, there exists an ideal in ℓ^1 of order ξ . Let c_0 denote the Banach space of all the complex-valued functions on the integer group that vanish at infinity, with the supremum norm. Then $\ell^1 = (c_0)^*$; let $\ell^{\infty} = (\ell^1)^* = (c_0)^{**}$. Each of the Banach spaces c_0 , ℓ^1 , ℓ^{∞} can be realized as a space of distributions on the circle group (considered as the real numbers modulo 2π), by the correspondence $$\left\{ \mathbf{\hat{S}}(\mathbf{n}) \colon -\infty < \mathbf{n} < \infty \right\} \iff \left\{ \mathbf{S}(\mathbf{x}) \sim \sum_{\mathbf{n}=-\infty}^{\infty} \mathbf{\hat{S}}(\mathbf{n}) \, \mathbf{e}^{\mathbf{i} \mathbf{n} \mathbf{x}} \colon 0 \leq \mathbf{x} < 2\pi \right\}.$$ Corresponding to c_0 , ℓ^1 , ℓ^∞ , respectively, are the space PF of *pseudofunctions*; the space W of functions with absolutely convergent Fourier series; and the space PM of *pseudomeasures* (see [3, Appendices I to III]). Under convolution, ℓ^1 is a group algebra; and W, under pointwise multiplication, is its Gel'fand representation. When we refer to a topology in W, we mean the norm topology unless we say otherwise. If I is an ideal (not necessarily closed) in $W \cong \ell^1$, its hull is the closed set $$h(I) = \{x: f(x) = 0 \text{ for every } f \in I\}.$$ The hull h(I) is empty if and only if I = W. If E is a closed set, then the maximal ideal whose hull is E is the closed ideal $I(E) = \{ f \in W : f^{-1}(0) \supset E \}$. The minimal ideal whose hull is E is Received February 13, 1967. This work was partially supported by the National Science Foundation. The author thanks the referee for helpful criticisms.