NORMS OF POWERS OF ABSOLUTELY CONVERGENT FOURIER SERIES IN SEVERAL VARIABLES

G. W. Hedstrom

In this paper we establish an upper bound for $\|f^n\|$, where f is an absolutely convergent Fourier series

$$f(\theta) = \sum_{\alpha} a_{\alpha} e^{i(\alpha, \theta)}$$

in k variables, with $\|\mathbf{f}\| = \sum_{\alpha} |\mathbf{a}_{\alpha}|$; here we use the notation $\alpha = (\alpha_1, \dots, \alpha_k)$ for a k-tuple of integers, and we write $\theta = (\theta_1, \dots, \theta_k)$ and $(\alpha, \theta) = \sum_{\alpha_j \theta_j} \theta_j$. We also use

$$D_{j} = \frac{\partial}{\partial \theta_{j}}, \quad D^{\beta} = \prod_{j=1}^{k} D_{j}^{\beta j}.$$

We introduce the partial ordering

$$\beta \geq \beta^{\, \text{!`}}$$
 if and only if $\beta_{\, j} \geq \beta^{\, \text{!`}}_{\, j}$ for $\, j$ = 1, ..., k .

Let $0 = (0, \dots, 0)$ and $I = (1, \dots, 1)$.

THEOREM. Let f be given by an absolutely convergent Fourier series, and let $|f(\theta)| \le 1$ for all θ . Suppose $D^{\beta}f$ $(0 \le \beta \le I)$ exists in the sense of Sobolev and belongs to L_2 . Then

$$\|f^n\| \le M n^{k/2}$$
 (n = 1, 2, ...).

Remarks. For k = 1, the theorem was proved by Kahane (see [4, page 103]) by means of an inequality of F. Carlson [1]. We shall prove a generalization of Carlson's inequality (Lemma 2).

Kahane [3] showed that for k = 1 the estimate is the best possible estimate. His example is easily modified to show that

$$\|f^n\| \ge C n^{k/2}$$
 (C > 0, n = 1, 2, ...)

if $f(\theta) = e^{i\phi(\theta)}$ and ϕ is real, $\phi \in C^2$, and if for some θ the matrix $[D_h D_j \phi(\theta)]$ does not have zero as an eigenvalue. It is sufficient to deal with the localized problem, and we may rotate the coordinates to diagonalize the second derivatives (see [2]).

The proof is based on two lemmas. The first concerns polynomials in a complex variable $z = (z_1, \dots, z_k)$. We use the notation $dz = dz_1 \dots dz_k$ and $d\theta = d\theta_1 \dots d\theta_k$.

LEMMA 1. Let $b_{\alpha} \geq 0$ ($\alpha \geq 0$). Suppose $g(z) = \sum b_{\alpha} z^{\alpha}$ is a polynomial. Then

Received May 20, 1966.