## QUASICONFORMAL MAPPINGS OF THE UNIT DISC WITH TWO INVARIANT POINTS

## Jan Krzyż and Julian Ławrynowicz

### INTRODUCTION

Let  $\triangle$  be the unit disc, and let w=f(z) be a Q-quasiconformal mapping of  $\triangle$  onto itself such that f(0)=0 and  $f(z_0)=z_0$  for some  $z_0$  ( $0<|z_0|<1$ ). If Q=1, then obviously w=f(z) is the identity mapping. It is natural to ask how far a Q-quasiconformal mapping w=f(z) satisfying the above-mentioned conditions can depart from the identity.

In this paper, we obtain a parametric representation for quasiconformal mappings of  $\triangle$  onto itself that leave the points 0 and  $z_0$  unchanged. Our results (Theorems 1 and 2) are analogues of corresponding results due to Tao-shing Shah [5]. A simple derivation of a parametric representation for quasiconformal mappings has recently been given by F. W. Gehring and E. Reich [3]. However, the variable complex dilatation as given by formula (2.1) in [3] does not imply the invariance of  $z_0$  for changing t.

Theorems 1 and 2 enable us to obtain an estimate of |f(z) - z| (Theorem 3) in terms of z,  $z_0$ , and Q for the class under consideration. In the limiting case, the estimate yields an inequality due to Tao-shing Shah [5].

# 1. THE CLASS $s_Q^{z_0}$ AND ITS SUBCLASSES

Let  $S_Q^{z_0}$  denote the class of all functions f that map  $\Delta$  onto itself Q-quasiconformally with f(0)=0 and  $f(z_0)=z_0$ . Further, let  $S_*$  denote the class of all measurable complex dilatations  $\mu$  defined a.e. in  $\Delta$  and bounded by a constant less than 1. Let  $(S)_*$  denote the subclass of  $S_*$  consisting of functions belonging to the class  $C^1$  and continuable on  $\overline{\Delta}$  as  $C^1$ -functions. Let  $\hat{S}_*$  be the subclass of  $(S)_*$  consisting of functions that have in  $\overline{\Delta}$  partial derivatives of the first order subject to a global Hölder condition with a certain exponent  $\delta$   $(0<\delta\leq 1)$ . Finally, let  $(S)_Q^{z_0}$  and  $\hat{S}_Q^{z_0}$  denote the subclasses of  $S_Q^{z_0}$  consisting of functions generated by complex dilatations that belong to the classes  $(S)_*$  and  $\hat{S}_*$ , respectively.

LEMMA 1. The subclasses  $\hat{S}_Q^{z_0}$  and  $(\hat{S})_Q^{z_0}$  are dense in the class  $S_Q^{z_0}$ . The proof is analogous to the proofs in [1] and [4].

#### 2. AN INTEGRAL LEMMA

In what follows, we consider functions f and the corresponding complex dilatations  $\mu$  depending on one real parameter t.

Received December 11, 1966.