TRANSFORMS OF CERTAIN MEASURES

Robert Kaufman

Let G be a locally compact, nondiscrete abelian group, and Γ its Pontrjagin dual. The Fourier-Stieltjes transform $\hat{\mu}$ of a measure μ is defined by the formula

$$\hat{\mu}(\gamma) = \int \overline{\gamma(\mathbf{x})} \, \mu(\mathrm{d}\mathbf{x}) \qquad (\mu \in M(G), \ \gamma \in \Gamma).$$

We present here generalizations of two theorems of Wik [2] concerning compact sets $P \subseteq G$ with the property that $\|\hat{\mu}\| = \|\hat{\mu}\|_{\infty} = \|\mu\|$ for all $\mu \in M(P)$ (measures supported in P).

THEOREM 1. If $\limsup |\hat{\mu}| < \|\mu\|$ for some $\mu \in M(P)$, then $\|\hat{\lambda}\| < \|\lambda\|$ for some $\lambda \in M(P)$.

Here $\lim\sup_{C} |\hat{\mu}| = \inf\sup_{C} |\hat{\mu}(\gamma)|$, the infimum being taken over all compact subsets C of Γ .

THEOREM 2. Let Γ_1 be a closed subgroup of Γ , and let Γ/Γ_1 be compact. If

- (1) $\|\hat{\mu}\| = \|\mu\|$ for all measures $\mu \in M(P)$ and
- (2) $\sup_{\gamma_1 \in \Gamma_1} |\hat{\sigma}(\gamma_1)| = ||\sigma|| \text{ for all discrete measures } \sigma \text{ in P,}$

then

(3)
$$\sup_{\gamma_1 \in \Gamma_1} |\hat{\mu}(\gamma_1)| = \|\mu\| \text{ for all measures in } M(P).$$

A general reference for the duality theory is Hewitt and Ross [1]; specific references are given below as needed. The author thanks the referee for pointing out a certain simplification in the proof of Theorem 1.

LEMMA 1. For any measure ν concentrated on a countable subset D of G, $\lim\sup_{n\to\infty}\|\hat{\nu}\|=\|\hat{\nu}\|$.

Proof. Suppose that $\limsup |\hat{v}| < \|\hat{v}\|$; then $|\hat{v}(\gamma_0)| = \|\hat{v}\|$ for some $\gamma_0 \in \Gamma$. There exist a compact set $C \subseteq \Gamma$ and a positive number δ such that $|\hat{v}| < \|\hat{v}\| - \delta$ in the complement of C. Since ν is an atomic measure, there exist a finite set $\{d_1, d_2, \cdots, d_n\} \subseteq D$ and a positive number ϵ such that whenever

$$\gamma \in \Gamma$$
 and $|\gamma(d_i) - 1| < \epsilon$ $(1 < i < n)$,

then $|\hat{v}(\gamma + \gamma_0) - \hat{v}(\gamma_0)| < \delta$, whence $\gamma + \gamma_0 \in C$.

If χ is a character of G, not assumed to be continuous, then χ is in the pointwise closure of the set

$$C_1 = \{ \gamma \in \Gamma: |\gamma(d_i) - \chi(d_i) | < \epsilon/2, 1 \le i \le n \}$$

Received February 16, 1966.