TWO THEOREMS ABOUT PERIODIC TRANSFORMATIONS OF THE 3-SPHERE

Ralph H. Fox

To R. L. Wilder on his seventieth birthday.

Let T denote a transformation of period $\nu>1$ of the 3-sphere Σ , and let Λ denote the set of fixed points of T. It is generally believed that if Λ is a tame simple closed curve it must be unknotted, but this conjecture of P. A. Smith has not yet been proved. In his thesis [4], C.H. Giffen proved that Λ can not be a torus knot. In this note I shall give a new and elementary proof of Giffen's theorem (Giffen's proof makes heavy use of fiber space theory), and then establish a condition that must be satisfied by the group Γ of Λ .

Suppose that Λ is a tame simple closed curve, and denote the orbit space Σ/T by S. Denote the collapsing map $\Sigma \to S$ by e and the image of Λ under e by L. It is known [10] that S is a closed 3-manifold, that L is a tame simple closed curve in S, and that e: $(\Sigma, \Lambda) \to (S, L)$ is a ν -fold cyclic covering, branched over L.

Since $e \mid \Sigma - \Lambda \colon \Sigma - \Lambda \to S - L$ is an unbranched ν -fold cyclic covering, the group $\Gamma = \pi(\Sigma - \Lambda)$ must be a normal subgroup of index ν of the group $G = \pi(S - L)$. It is known [6] that the 3-manifold S must be simply connected. Since this last statement has appeared in several places [2], [3], [4], [7], [8] without reference, I digress to give a brief proof of it.

Let m be a meridian of L—that is, an element of G represented by a meridian curve on the boundary of a tubular neighborhood of L. Since Λ is the branch curve of the ν -fold cyclic covering e, the element $\mu = m^{\nu}$ of Γ is a meridian of Λ . Since filling in the knot Λ maps Γ onto $\pi(\Sigma) = 1$, the consequence $\langle \mu \rangle$ of the element μ must be all of Γ , and hence $\langle m \rangle$, the consequence in G of m, must contain Γ . Since the elements 1, m, …, $m^{\nu-1}$ represent the ν cosets of Γ in G, it follows that $\langle m \rangle$ must be all of G. Now, filling in the knot L maps G onto $\pi(S)$. Since m is thereby mapped into 1, we see that $\pi(S) \approx G/\langle m \rangle = 1$.

Let $\mathscr{A}(\Gamma)$ and $\mathscr{I}(\Gamma)$ denote the group of automorphisms and the group of inner automorphisms, respectively, and denote by $\mathscr{B}(\Gamma)$ the group of those automorphisms of Γ that induce the identity automorphism of Γ/Γ' . Thus an automorphism B of Γ belongs to $\mathscr{B}(\Gamma)$ if and only if each element γ of Γ has the same linking number with Λ as does its image $B(\gamma)$. Of course, $\mathscr{I}(\Gamma) \subset \mathscr{B}(\Gamma) \subset \mathscr{A}(\Gamma)$. The inner automorphism D_m : $g \to mgm^{-1}$ of G maps the normal subgroup Γ onto itself, and so it induces an automorphism Δ_m of Γ (which may or may not be an inner automorphism). Since the inner automorphism D_m^{ν} of G induces the inner automorphism Δ_{μ} : $\gamma \to \mu \gamma \mu^{-1}$, we see that $\Delta_m^{\nu} = \Delta_{\mu} \in \mathscr{I}(\Gamma)$. Since a loop in Σ - Λ has linking number 0 with Λ if and only if the loop in S - L into which it is projected by Γ 0 has linking number Γ 1 with Γ 2 we see that Γ 3 induces the identity automorphism of Γ 4. Thus Γ 5 in Γ 6 induces the identity automorphism of Γ 7 in Γ 6. Thus Γ 6 induces the group Γ 7 of homologically faithful automorphisms.

Received November 7, 1966.