WILD CELLS AND SPHERES IN HIGHER DIMENSIONS

Morton Brown

Dedicated to R. L. Wilder on his seventieth birthday.

1. INTRODUCTION

The purpose of this paper is to apply a theorem of Andrews and Curtis [1] to get a rapid formula for constructing wild k-cells and k-spheres in S^n . In Section 4 we construct an arc in S^n (n > 3) that pierces no locally flat (n - 1)-sphere. (The somewhat lengthy interval between discovery and publication has led to the prior appearance of applications of and reference to this technique in the literature [9], [11].) Our starting point is the following obvious modification of the results of [1]:

THEOREM (Andrews and Curtis). Let α be an arc in S^n . Then the suspension $\sigma(S^n/\alpha)$ of the quotient space S^n/α is homeomorphic to S^{n+1} . (If X is compact, we use $\sigma(X)$ to denote the quotient space of $X \times [0, 1]$ obtained by pinching $X \times 0$ and $X \times 1$ to points.)

2. THE CONSTRUCTION α^*

Let α be an arc in S^n , and π the projection map $\pi\colon S^n\to S^n/\alpha$. This induces the natural suspensions $\sigma(\pi)\colon \sigma(S^n)\to \sigma(S^n/\alpha)$, where the image and domain spaces are both S^{n+1} . Let $\alpha^*=\sigma(\pi(\alpha))\subset\sigma(S^n/\alpha)$ be the suspension of the point $\langle\alpha\rangle$ of S^n/α . Then α^* is an arc and $\sigma(\pi)\mid\sigma(S^n)-\sigma(\alpha)$ is a homeomorphism onto $\sigma(S^n/\alpha)-\alpha^*$. On the other hand, $\sigma(S^n)-\sigma(\alpha)$ is homeomorphic to $\sigma(S^n-\alpha)\times R'$, since $\sigma(\alpha)$ contains the suspension points. Hence

- (2.1) $\sigma(S^n/\alpha) \alpha^*$ is homeomorphic to $(S^n \alpha) \times R'$.
- (2.2) for every arc $\alpha \subset S^n$ there is an arc $\alpha^* \subset S^{n+1}$ such that S^n α and S^{n+1} α^* have the same homotopy type,
- (2.3) for each $n \geq 3$ there exists an arc in S^n whose complement is not simply connected.
 - We get (2.3) by repeated applications of (2.2) to the arc (1.1) of [8].
- (2.4) For each pair (n, k) with $n \ge 3$ and $1 \le k \le n$, there exists a k-cell in S^n whose complement is not simply connected.

Proof. Let P(n, k) denote the statement of (2.4) for a fixed admissible pair (n, k), and P(n, *) the statement for n fixed and all admissible k. P(3, *) is proved in [8]. Inductively, suppose P(n, *) is true. From (2.3) we have (n + 1, 1). But if k > 1, then P(n + 1, k) follows from P(n, k - 1). For if α^{k-1} is a (k-1)-cell in S^n and $\pi_1(S^n - \alpha^{k-1})$ is nontrivial, then $\alpha^k = \sigma(\alpha^{k-1})$ is a k-cell in $S^{n+1} = \sigma(S^n)$. Since $\sigma(\alpha^{k-1})$ contains the suspension points, $S^{n+1} - \alpha^k$ is homeomorphic to $(S^n - \alpha^{k-1}) \times R^1$.

Received August 22, 1966.

This research was supported by the National Science Foundation.