PRIMITIVE INVARIANTS AND CONJUGATE CLASSES OF FUNDAMENTAL REPRESENTATIONS OF A COMPACT SIMPLY CONNECTED LIE GROUP

Shôrô Araki

Let G be a compact, connected, and simply connected Lie group. The rational cohomology algebra of G can be expressed as an exterior algebra

$$H^*(G; Q) = \Lambda_O(x_1, \dots, x_{\ell}),$$

where deg $x_i = 2m_i - 1$ $(1 \le i \le \ell)$ and $\ell = \text{rank G}$. The integers m_i are called the *primitive invariants* of G.

Among the complex representations of G there are ℓ fundamental ones, ρ_1 , ..., ρ_ℓ that are irreducible, map a fixed maximal torus T of G onto diagonal matrices, and have highest weights ω_1 , ..., ω_ℓ satisfying the relations

$$2\langle \omega_i, \alpha_j \rangle / \langle \alpha_j, \alpha_j \rangle = \delta_{ij} \quad (1 \leq i, j \leq \ell)$$

for a simple system of roots $\{\alpha_1, \cdots, \alpha_\ell\}$ of G with respect to T. The set $\{\rho_1, \cdots, \rho_\ell\}$ is closed under conjugation up to equivalence; that is, the conjugate representation $\bar{\rho}_i$ of ρ_i is equivalent to some ρ_j , so that it can be decomposed into conjugate classes. Each class consists of one self-conjugate representation or two mutually conjugate representations.

In this note we give a general proof of the following theorem.

THEOREM. The number of even primitive invariants of G is equal to the number of conjugate classes of fundamental representations.

(Professor Armand Borel has pointed out to the author that this theorem can be proved by a method that does not involve KO theory, but still uses Atiyah's result [1].)

The theorem partially illustrates the phenomenon that the number of even primitive invariants is generally larger than the number of odd primitive invariants. (From this point of view, the case G = SU(2n+1) looks rather exceptional.) When no simple factor of G has outer automorphisms, then every ρ_i is self-conjugate, hence every m_i is even.

1. Our basic tool is the rational KO-cohomology, that is, a cohomology theory assigning to each space X (finite CW-complex) the groups $KO^i(X) \otimes Q$ (i \in Z), which we denote by KO_Q [2]. Let

$$\epsilon \colon KO^{i}(X) \to K^{i}(X)$$
 and $\rho \colon K^{i}(X) \to KO^{i}(X)$ (i ϵ Z)

denote natural transformations induced by complexification and real restriction of vector bundles respectively [2], [3]. Let g be the generator of K^{-2} (a point) given by the reduced Hopf bundle, let λ and μ be the generators of KO^{-4} (a point) and

Received January 5, 1966 and December 6, 1966. Work supported in part by NSF grant GP-4069.