ON GENERALIZATIONS OF EULER'S PARTITION THEOREM

George E. Andrews

1. INTRODUCTION

Sylvester's memoir on partitions contains an interesting generalization of Euler's partition theorem [12, p. 293 (p. 45 in Collected Works)]. In any partition of n into distinct parts, we may count the total number of sequences of consecutive integers appearing. For example, 31 = 10 + 8 + 7 + 3 + 2 + 1 consists of three such sequences, namely 10; 8, 7; 3, 2, 1. Sylvester's theorem is as follows.

THEOREM 1. Let $A_k(n)$ denote the number of partitions of n into odd parts (repetitions allowed) with exactly k distinct parts appearing. Let $B_k(n)$ denote the number of partitions of n into distinct parts such that exactly k sequences of consecutive integers appear in each partition. Then

$$A_k(n) = B_k(n).$$

For example, let n = 15, k = 3. Then the partitions enumerated by $A_3(15)$ are

Hence $A_3(15) = 11$. The partitions enumerated by $B_3(15)$ are

$$11+3+1$$
, $10+4+1$, $9+5+1$, $9+4+2$, $8+6+1$, $8+5+2$, $8+4+2+1$, $7+5+3$, $7+5+2+1$, $7+4+3+1$, $6+5+3+1$.

Hence $B_3(15) = 11$.

This beautiful theorem was proved arithmetically [12, Section (46)]. F. Franklin has deduced the result for k = 1 from a study of the generating functions involved [12, Section (25) (C)]; however, there seems to be no known analytic proof for k > 1. In Section 2 of this paper, we prove Sylvester's theorem by means of generating functions.

In Section 3, we give a new generalization of Euler's theorem. Let $\Pi_d(n)$ denote the set of partitions of n into distinct parts. If π is any partition of n, say $b_1+\cdots+b_s=n$ ($b_i\geq b_{i+1}$), let $g(\pi)$ denote the number of solutions of the inequality $b_i-b_{i+1}\geq 2$ ($i=1,\cdots,s$; define $b_{s+1}=0$). For example, in the partition 18=8+6+2+2, $g(\pi)=3$.

THEOREM 2. Let $C_k(n)$ denote the number of partitions of n with exactly k distinct even parts appearing (all other parts being odd), then

Received December 3, 1965.