A MILDLY WILD TWO-CELL

Ralph Tindell

1. INTRODUCTION

The results in this paper grew from an attempt to answer the following question of R. H. Fox: Does there exist in 3-space or in 4-space a wild 2-cell with an interior point p such that every 2-cell subset that has p on its boundary is tame? [5, Problem 21.] Doyle [4] has shown that no such cell exists in 3-space. In Section 5, we give an affirmative answer for 4-space, along with a discussion of mildly wild n-cells in (n+2)-space. (An n-cell C^n in E^{n+2} is said to be *mildly wild* if it is wild and one of its interior points p has the property that each n-cell subset of C^n having p on its boundary is tame.) In Section 3 we prove a general theorem on ε -taming. In Section 4 we prove an ε -taming theorem about almost piecewise linear imbeddings; it is the main tool in the construction of the mildly wild 2-cell; we also show, in Section 4, that each almost polyhedral 2-sphere in 4-space is the union of two flat cells.

2. DEFINITIONS

We assume familiarity with the material contained in Chapters 1 and 3 of [18], and we adhere to the notation given there. By a *simplex* we mean a closed rectilinear simplex, and by a *complex* we mean a closed rectilinear simplical complex (which may be assumed to be a subcomplex of a rectilinear division of some Euclidean space E^q). $K \downarrow L$ means that K *collapses* to L (see Chapter 3 of [7]). We shall abbreviate "piecewise linear" (or piecewise linearly) to pwl. If M is a manifold, we shall denote its *interior* by int M and its *boundary* by ∂M ; we shall write M and M for the interior of M as a subset of the topological space M, and M for the closure of M.

If a space C is homeomorphic (respectively, pwl homeomorphic) to a k-simplex, we say that C is a k-cell (respectively, k-ball). An n, m cell pair (n, m ball pair) is a pair (C^n , C^m) of cells (balls) with $C^m \subset C^n$ and $C^m \cap \partial C^n = \partial C^m$; an n, m semi-cell pair (n, m semi-ball pair) is a pair (C^n , C^m) of cells (balls) with $C^m \subset C^n$ and such that

$$C^{m} \cap \partial C^{n} = \partial C^{m} \cap \partial C^{n} = C^{m-1}$$

is an (m-1)-cell (an (m-1)-ball). The *standard* n, m ball pair (Σ, τ) and the standard n, m semi-ball pair (Σ, σ) are defined as follows: let σ' be an (m-1)-simplex in E^{m-1} , and let $u=(0, \cdots, 0, -1)$ and $v=(0, \cdots, 0, 1)$ belong to E^m ; then σ is the m-simplex $u * \sigma$,

$$\tau = \sigma \cup (v * \sigma'),$$

Received May 12, 1966.

The author was supported by the National Science Foundation Grant GP 4006; the contents of this paper form a part of the author's doctoral thesis written at Florida State University under the direction of Professor James J. Andrews.