INVOLUTIONS FIXING PROJECTIVE SPACES

R. E. Stong

The object of this paper is to prove the following result.

THEOREM. Suppose (T, M^n) is a differentiable involution on a closed manifold M^n (n > 2r), and its fixed point set is real projective space RP(2r). Then n = 4r, and (T, M^n) is cobordant to the involution of RP(2r) × RP(2r) that sends (x, y) into (y, x).

This result was suggested by Conner and Floyd [2, Section 27]. In particular, Conner and Floyd proved that n = 4r, and that if $\xi : E \to RP(2r)$ denotes the normal bundle of RP(2r) in M^n , then the Stiefel-Whitney class of ξ is $(1+d)^m$, where both m and the binomial coefficient $\binom{m}{2r}$ are odd, and where d is the nonzero class of $H^1(RP(2r); \mathbb{Z}_2)$.

Proof of the theorem. Let $RP(\xi)$ be the total space of the RP(2r-1)-bundle associated with ξ , and let $p: RP(\xi) \to RP(2r)$ be the projection. Borel and Hirzebruch [1] have shown that $H^*(RP(\xi); Z_2)$ is the free module over $H^*(RP(2r); Z_2)$, $via\ p^*$, on the classes 1, c, ..., c^{2r-1} , where c is the characteristic class of the double cover of $RP(\xi)$ by the sphere bundle of ξ . Multiplication in $H^*(RP(\xi); Z_2)$ is given by the formula

$$0 = \sum_{i=0}^{2r} c^{2r-i} p^*(w_i(\xi)) = \sum_{i=0}^{2r} {m \choose i} c^{2r-i} \alpha^i$$

= $c^{2r} + c^{2r-1}\alpha$ + terms of higher degree in α

(since m is odd), where $\alpha = p^*(d)$. The Stiefel-Whitney class of $RP(\xi)$ is

$$w = (1+\alpha)^{2r+1} \left\{ \sum_{i=0}^{2r} {m \choose i} (1+c)^{2r-i} \alpha^{i} \right\}.$$

(See [2, Theorem 23.3].)

By Theorem 28.1 of [2], the antipodal involution on the sphere bundle of ξ bounds a free involution, or equivalently, all of the generalized Stiefel-Whitney numbers $c^i w_{\omega}[RP(\xi)]$ of $RP(\xi)$ are zero (here w_{ω} denotes any product $w_i \cdots w_i$ of Stiefel-Whitney classes).

Since m and $\binom{m}{2r}$ are odd, $m \geq 2r + 1$. If m = 2r + 1, then the bundle ξ and the normal bundle of RP(2r) in RP(2r) × RP(2r), which is the tangent bundle τ of RP(2r), have the same Stiefel-Whitney class. Thus the bundles $(\xi, RP(2r))$ and

Received March 15, 1966.

The author is indebted to the National Science Foundation for financial support during this work.