A STABILITY CONDITION FOR y'' + p(x)y = 0

A. Meir, D. Willett, and J. S. W. Wong

In a recent paper, A. C. Lazer [1] showed that if p(x) > 0, $p(x) \in C^3(a, \infty)$, $p(x) \to +\infty$ as $x \to \infty$, and

(1)
$$\int_{a}^{\infty} |(p^{-1/2}(x))^{||}| dx < +\infty,$$

then all solutions of the equation

(2)
$$y'' + p(x)y = 0$$

satisfy the condition

$$\lim_{x\to\infty} y(x) = 0.$$

In this note, we establish the same conclusion under weaker hypotheses for the case when p is monotonic.

THEOREM 1. If $p'(x) \ge 0$ for $a < x < \infty$, $p(x) \in C^3(a, \infty)$,

(4)
$$\lim_{x\to\infty} p(x) = +\infty,$$

and

(5)
$$\int_{a}^{w} |(p^{-\alpha}(x))^{m}| dx = o(p^{1-\alpha}(w)) \quad (w \to \infty)$$

for some α (0 < α < 1), then every solution of (2) satisfies (3).

Proof. Writing $y^2 + p^{-1}y^{-1} = v$ and $p^{-\alpha} = \phi$, we can easily verify the identity

(6)
$$\frac{d}{dx} \left\{ p^{1-\alpha} v + \frac{1}{2} \phi'' y^2 - \phi' y' y \right\} = \frac{1}{2} \phi''' y^2 + (1 - 2\alpha) p' p^{-\alpha} y^2.$$

Now we observe that $v' = -p' p^{-2} y^2 \le 0$; thus v(x) is a positive, nonincreasing function. Therefore

(7)
$$\lim_{x \to \infty} v(x) = s$$

exists. If s=0, then (3) clearly follows. We shall show that the assumption s>0 yields a contradiction. It follows from (4) that all solutions of (2) are oscillatory; hence there exists a sequence $\{x_n\}$ such that $x_n\to\infty$ and

Received February 15, 1966.